96 research outputs found

    Why It Takes So Long to Connect to a WiFi Access Point

    Full text link
    Today's WiFi networks deliver a large fraction of traffic. However, the performance and quality of WiFi networks are still far from satisfactory. Among many popular quality metrics (throughput, latency), the probability of successfully connecting to WiFi APs and the time cost of the WiFi connection set-up process are the two of the most critical metrics that affect WiFi users' experience. To understand the WiFi connection set-up process in real-world settings, we carry out measurement studies on 55 million mobile users from 44 representative cities associating with 77 million APs in 0.40.4 billion WiFi sessions, collected from a mobile "WiFi Manager" App that tops the Android/iOS App market. To the best of our knowledge, we are the first to do such large scale study on: how large the WiFi connection set-up time cost is, what factors affect the WiFi connection set-up process, and what can be done to reduce the WiFi connection set-up time cost. Based on the measurement analysis, we develop a machine learning based AP selection strategy that can significantly improve WiFi connection set-up performance, against the conventional strategy purely based on signal strength, by reducing the connection set-up failures from 33%33\% to 3.6%3.6\% and reducing 80%80\% time costs of the connection set-up processes by more than 1010 times.Comment: 11pages, conferenc

    Universal Adversarial Perturbations for CNN Classifiers in EEG-Based BCIs

    Full text link
    Multiple convolutional neural network (CNN) classifiers have been proposed for electroencephalogram (EEG) based brain-computer interfaces (BCIs). However, CNN models have been found vulnerable to universal adversarial perturbations (UAPs), which are small and example-independent, yet powerful enough to degrade the performance of a CNN model, when added to a benign example. This paper proposes a novel total loss minimization (TLM) approach to generate UAPs for EEG-based BCIs. Experimental results demonstrated the effectiveness of TLM on three popular CNN classifiers for both target and non-target attacks. We also verified the transferability of UAPs in EEG-based BCI systems. To our knowledge, this is the first study on UAPs of CNN classifiers in EEG-based BCIs. UAPs are easy to construct, and can attack BCIs in real-time, exposing a potentially critical security concern of BCIs

    CITB: A Benchmark for Continual Instruction Tuning

    Full text link
    Continual learning (CL) is a paradigm that aims to replicate the human ability to learn and accumulate knowledge continually without forgetting previous knowledge and transferring it to new tasks. Recent instruction tuning (IT) involves fine-tuning models to make them more adaptable to solving NLP tasks in general. However, it is still uncertain how instruction tuning works in the context of CL tasks. This challenging yet practical problem is formulated as Continual Instruction Tuning (CIT). In this work, we establish a CIT benchmark consisting of learning and evaluation protocols. We curate two long dialogue task streams of different types, InstrDialog and InstrDialog++, to study various CL methods systematically. Our experiments show that existing CL methods do not effectively leverage the rich natural language instructions, and fine-tuning an instruction-tuned model sequentially can yield similar or better results. We further explore different aspects that might affect the learning of CIT. We hope this benchmark will facilitate more research in this direction.Comment: EMNLP 2023 Finding

    Turn-Level Active Learning for Dialogue State Tracking

    Full text link
    Dialogue state tracking (DST) plays an important role in task-oriented dialogue systems. However, collecting a large amount of turn-by-turn annotated dialogue data is costly and inefficient. In this paper, we propose a novel turn-level active learning framework for DST to actively select turns in dialogues to annotate. Given the limited labelling budget, experimental results demonstrate the effectiveness of selective annotation of dialogue turns. Additionally, our approach can effectively achieve comparable DST performance to traditional training approaches with significantly less annotated data, which provides a more efficient way to annotate new dialogue data.Comment: EMNLP 2023 Main Conferenc

    Invertible Mosaic Image Hiding Network for Very Large Capacity Image Steganography

    Full text link
    The existing image steganography methods either sequentially conceal secret images or conceal a concatenation of multiple images. In such ways, the interference of information among multiple images will become increasingly severe when the number of secret images becomes larger, thus restrict the development of very large capacity image steganography. In this paper, we propose an Invertible Mosaic Image Hiding Network (InvMIHNet) which realizes very large capacity image steganography with high quality by concealing a single mosaic secret image. InvMIHNet consists of an Invertible Image Rescaling (IIR) module and an Invertible Image Hiding (IIH) module. The IIR module works for downscaling the single mosaic secret image form by spatially splicing the multiple secret images, and the IIH module then conceal this mosaic image under the cover image. The proposed InvMIHNet successfully conceal and reveal up to 16 secret images with a small number of parameters and memory consumption. Extensive experiments on ImageNet-1K, COCO and DIV2K show InvMIHNet outperforms state-of-the-art methods in terms of both the imperceptibility of stego image and recover accuracy of secret image

    Discriminative Topic Mining via Category-Name Guided Text Embedding

    Full text link
    Mining a set of meaningful and distinctive topics automatically from massive text corpora has broad applications. Existing topic models, however, typically work in a purely unsupervised way, which often generate topics that do not fit users' particular needs and yield suboptimal performance on downstream tasks. We propose a new task, discriminative topic mining, which leverages a set of user-provided category names to mine discriminative topics from text corpora. This new task not only helps a user understand clearly and distinctively the topics he/she is most interested in, but also benefits directly keyword-driven classification tasks. We develop CatE, a novel category-name guided text embedding method for discriminative topic mining, which effectively leverages minimal user guidance to learn a discriminative embedding space and discover category representative terms in an iterative manner. We conduct a comprehensive set of experiments to show that CatE mines high-quality set of topics guided by category names only, and benefits a variety of downstream applications including weakly-supervised classification and lexical entailment direction identification.Comment: WWW 2020. (Code: https://github.com/yumeng5/CatE

    Tactile-based Object Retrieval From Granular Media

    Full text link
    We introduce GEOTACT, a robotic manipulation method capable of retrieving objects buried in granular media. This is a challenging task due to the need to interact with granular media, and doing so based exclusively on tactile feedback, since a buried object can be completely hidden from vision. Tactile feedback is in itself challenging in this context, due to ubiquitous contact with the surrounding media, and the inherent noise level induced by the tactile readings. To address these challenges, we use a learning method trained end-to-end with simulated sensor noise. We show that our problem formulation leads to the natural emergence of learned pushing behaviors that the manipulator uses to reduce uncertainty and funnel the object to a stable grasp despite spurious and noisy tactile readings. We also introduce a training curriculum that enables learning these behaviors in simulation, followed by zero-shot transfer to real hardware. To the best of our knowledge, GEOTACT is the first method to reliably retrieve a number of different objects from a granular environment, doing so on real hardware and with integrated tactile sensing. Videos and additional information can be found at https://jxu.ai/geotact
    corecore