97 research outputs found

    Genuine converging solution of self-consistent field equations for extended many-electron systems

    Full text link
    Calculations of the ground state of inhomogeneous many-electron systems involve a solving of the Poisson equation for Coulomb potential and the Schroedinger equation for single-particle orbitals. Due to nonlinearity and complexity this set of equations, one believes in the iterative method for the solution that should consist in consecutive improvement of the potential and the electron density until the self-consistency is attained. Though this approach exists for a long time there are two grave problems accompanying its implementation to infinitely extended systems. The first of them is related with the Poisson equation and lies in possible incompatibility of the boundary conditions for the potential with the electron density distribution. The analysis of this difficulty and suggested resolution are presented for both infinite conducting systems in jellium approximation and periodic solids. It provides the existence of self-consistent solution for the potential at every iteration step due to realization of a screening effect. The second problem results from the existence of continuous spectrum of Hamiltonian eigenvalues for unbounded systems. It needs to have a definition of Hilbert space basis with eigenfunctions of continuous spectrum as elements, which would be convenient in numerical applications. The definition of scalar product specifying the Hilbert space is proposed that incorporates a limiting transition. It provides self-adjointness of Hamiltonian and, respectively, the orthogonality of eigenfunctions corresponding to the different eigenvalues. In addition, it allows to normalize them effectively to delta-function and to prove in the general case the orthogonality of the 'right' and 'left' eigenfunctions belonging to twofold degenerate eigenvalues.Comment: 12 pages. Reported on Interdisciplinary Workshop "Nonequilibrium Green's Functions III", August 22 - 26, 2005, University Kiel, Germany. To be published in Journal of Physics: Conference Series, 2006; Typos in Eqs. (37), (53) and (54) are corrected. The content of the footnote is changed. Published version available free online at http://www.iop.org/EJ/abstract/1742-6596/35/1/01

    Pointing control for the SPIDER balloon-borne telescope

    Full text link
    We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in azimuth at a peak acceleration of 0.8 deg/s2^2, and a peak speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing control accuracy.Comment: 20 pages, 12 figures, Presented at SPIE Ground-based and Airborne Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume 914

    Feasibility of trial procedures for a randomised controlled trial of a community based group exercise intervention for falls prevention for visually impaired older people: the VIOLET study

    Get PDF
    Background Visually impaired older people (VIOP) have a higher risk of falling than their sighted peers, and are likely to avoid physical activity. The aim was to adapt the existing Falls Management Exercise (FaME) programme for VIOP, delivered in the community, and to investigate the feasibility of conducting a definitive randomised controlled trial (RCT) of this adapted intervention. Methods Two-centre randomised mixed methods pilot trial and economic evaluation of the adapted group-based FaME programme for VIOP versus usual care. A one hour exercise programme ran weekly over 12 weeks at the study sites (Newcastle and Glasgow), delivered by third sector (voluntary and community) organisations. Participants were advised to exercise at home for an additional two hours over the week. Those randomised to the usual activities group received no intervention. Outcome measures were completed at baseline, 12 and 24 weeks. The potential primary outcome was the Short Form Falls Efficacy Scale – International (SFES-I). Participants’ adherence was assessed by reviewing attendance records and self-reported compliance to the home exercises. Adherence with the course content (fidelity) by instructors was assessed by a researcher. Adverse events were collected in a weekly phone call. Results Eighteen participants, drawn from community-living VIOP were screened; 68 met the inclusion criteria; 64 participants were randomised with 33 allocated to the intervention and 31 to the usual activities arm. 94% of participants provided data at the 12 week visit and 92% at 24 weeks. Adherence was high. The intervention was found to be safe with 76% attending nine or more classes. Median time for home exercise was 50 min per week. There was little or no evidence that fear of falling, balance and falls risk, physical activity, emotional, attitudinal or quality of life outcomes differed between trial arms at follow-up. Conclusions The intervention, FaME, was implemented successfully for VIOP and all progression criteria for a main trial were met. The lack of difference between groups on fear of falling was unsurprising given it was a pilot study but there may have been other contributory factors including suboptimal exercise dose and apparent low risk of falls in participants. These issues need addressing for a future trial

    Reliability and Validity of the Ethiopian Version of the Hospital Anxiety and Depression Scale (HADS) in HIV Infected Patients

    Get PDF
    The hospital anxiety and depression scale (HADS) is a widely used instrument for evaluating psychological distress from anxiety and depression. HADS has not yet been validated in Ethiopia. The aim of this study was to evaluate the reliability and validity of the Amharic (Ethiopian language) version of HADs among HIV infected patients.The translated scale was administered to 302 HIV/AIDS patients on follow up for and taking anti-retroviral treatment. Consistency assessment was conducted using Cronbach's alpha, test-retest reliability using intra-class correlation coefficients (ICC). Construct validity was examined using principal components analysis (PCA). Parallel analysis, Kaiser's criterion and the scree test were used for factor extraction.The internal consistency was 0.78 for the anxiety, 0.76 for depression subscales and 0.87 for the full scale of HADS. The intra-class correlation coefficient (ICC) was 80%, 86%, and 84% for the anxiety and depression subscales, and total score respectively. PCA revealed a one dimensional scale.This preliminary validation study of the Ethiopian version of the HADs indicates that it has promising acceptability, reliability and validity. The adopted scale has a single underlying dimension as indicated by Razavi's model. The HADS can be used to examine psychological distress in HIV infected patients. Findings are discussed and recommendations made

    Evaluating rehabilitation following lumbar fusion surgery (REFS): study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: The rate of lumbar fusion surgery (LFS) is increasing. Clinical recovery often lags technical outcome. Approximately 40% of patients undergoing LFS rate themselves as symptomatically unchanged or worse following surgery. There is little research describing rehabilitation following LFS with no clear consensus as to what constitutes the optimum strategy. It is important to develop appropriate rehabilitation strategies to help patients manage pain and recover lost function following LFS. METHODS/DESIGN: The study design is a randomised controlled feasibility trial exploring the feasibility of providing a complex multi-method rehabilitation intervention 3 months following LFS. The rehabilitation protocol that we have developed involves small participant groups of therapist led structured education utilising principles of cognitive behavioral therapy (CBT), progressive, individualised exercise and peer support. Participants will be randomly allocated to either usual care (UC) or the rehabilitation group (RG). We will recruit 50 subjects, planning to undergo LFS, over 30 months. Following LFS all participants will experience normal care for the first 3 months. Subsequent to a satisfactory 3 month surgical review they will commence their allocated post-operative treatment (RG or UC). Data collection will occur at baseline (pre-operatively), 3, 6 and 12 months post-operatively. Primary outcomes will include an assessment of feasibility factors (including recruitment and compliance). Secondary outcomes will evaluate the acceptability and characteristics of a limited cluster of quantitative measures including the Oswestry Disability Index (ODI) and an aggregated assessment of physical function (walking 50 yards, ascend/descend a flight of stairs). A nested qualitative study will evaluate participants' experiences. DISCUSSION: This study will evaluate the feasibility of providing complex, structured rehabilitation in small groups 3 months following technically successful LFS. We will identify strengths and weakness of the proposed protocol and the usefulness and characteristics of the planned outcome measures. This will help shape the development of rehabilitation strategies and inform future work aimed at evaluating clinical efficacy. TRIAL REGISTRATION: ISRCTN60891364, 10/07/2014

    Efficacy of a referral and physical activity program for survivors of prostate cancer [ENGAGE]: Rationale and design for a cluster randomised controlled trial

    Get PDF
    Background: Despite evidence that physical activity improves the health and well-being of prostate cancer survivors, many men do not engage in sufficient levels of activity. The primary aim of this study (ENGAGE) is to determine the efficacy of a referral and physical activity program among survivors of prostate cancer, in terms of increasing participation in physical activity. Secondary aims are to determine the effects of the physical activity program on psychological well-being, quality of life and objective physical functioning. The influence of individual and environmental mediators on participation in physical activity will also be determined.Methods/Design: This study is a cluster randomised controlled trial. Clinicians of prostate cancer survivors will be randomised into either the intervention or control condition. Clinicians in the intervention condition will refer eligible patients (n = 110) to participate in an exercise program, comprising 12 weeks of supervised exercise sessions and unsupervised physical activity. Clinicians allocated to the control condition will provide usual care to eligible patients (n = 110), which does not involve the recommendation of the physical activity program. Participants will be assessed at baseline, 12 weeks, 6 months, and 12 months on physical activity, quality of life, anxiety, depression, self-efficacy, outcome expectations, goals, and socio-structural factors.Discussion: The findings of this study have implications for clinicians and patients with different cancer types or other chronic health conditions. It will contribute to our understanding on the potential impact of clinicians promoting physical activity to patients and the long term health benefits of participating in physical activity programs.<br /
    corecore