7 research outputs found

    Fuzzy H2 Guaranteed Cost Sampled-Data Control of Nonlinear Time-Varying Delay Systems

    Get PDF
    We present and study a delay-dependent fuzzy H2 guaranteed cost sampled-data control problem for nonlinear time-varying delay systems, which is formed by fuzzy Takagi-Sugeno (T-S) system and a sampled-data fuzzy controller connected in a closed loop. Applying the input delay approach and stability theorem of Lyapunov-Krasovskii functional with Leibniz-Newton formula, the H2 guaranteed cost control performance is achieved in the sense that the closed-loop system is asymptotically stable. A new sufficient condition for the existence of fuzzy sampled-data controller is given in terms of linear matrix inequalities (LMIs). Truck-trailer system is given to illustrate the effectiveness and feasibility of H2 guaranteed cost sampled-data control design

    CD40 Is Essential in the Upregulation of TRAF Proteins and NF-KappaB-Dependent Proinflammatory Gene Expression after Arterial Injury

    Get PDF
    Despite extensive investigations, restenosis, which is characterized primarily by neointima formation, remains an unsolved clinical problem after vascular interventions. A recent study has shown that CD40 signaling through TNF receptor associated factor 6 (TRAF6) plays a key role in neointima formation after carotid artery injury; however, underlying mechanisms are not clearly elucidated. Because neointima formation may vary significantly depending on the type of injury, we first assessed the effect of CD40 deficiency on neointima formation in 2 injury models, carotid artery ligation and femoral artery denudation injury. Compared with wild-type mice, CD40 deficiency significantly reduced neointima formation and lumen stenosis in two different models. Further, we investigated the mechanism by which CD40 signaling affects neointima formation after arterial injury. In wild-type mice, the expression levels of CD40, several TRAF proteins, including TRAF1, TRAF2, TRAF3, TRAF5, and TRAF6, as well as total NF-kB p65 and phospho-NF-kB p65, in the carotid artery were markedly upregulated within 3–7 days after carotid ligation. Deficiency of CD40 abolished the injury-induced upregulation of TRAFs including TRAF6 and NF-kB-p65 in the injured vessel wall. Further, CD40−/− mice showed a significant decrease in the recruitment of neutrophils (at 3, 7d) and macrophages (at 7, 21d) into injured artery; this effect was most likely attributed to inhibition of NF-kB activation and marked downregulation of NF-kB-related gene expression, including cytokines (TNFα, IL-1β, IL-6), chemokines (MCP-1), and adhesion molecules (ICAM-1, VCAM-1). Moreover, neutrophil recruitment in a model of thioglycollate-induced peritonitis is impaired in CD40-deficient mice. In vitro data revealed that CD40 deficiency blocked CD40L-induced NF-kB p65 nuclear translocation in leukocytes. Altogether, our data identified for the first time that CD40 is essential in the upregulation of TRAF6, NF-kB activation, and NF-kB-dependent proinflammatory genes in vivo. Our findings firmly established the role for CD40 in neointima formation in 2 distinct injury models

    Fuzzy adaptive H ∞ control for a class of nonlinear systems ∗

    No full text
    Abstract. Combining both kinds of fuzzy logic forms including fuzzy T-S model and adaptive fuzzy logic systems, this paper presents an adaptive control scheme for a class of nonlinear systems. Firstly, the fuzzy T-S model is used to approximate the nonlinear systems, and the fuzzy control law of the fuzzy model is derived by the linear matrix inequality. Secondly, the adaptive fuzzy logic systems are constructed, and the modeling errors are eliminated by a compensator based on the adaptive fuzzy logic systems with three adjustable parameters: weights, centers and widths. It is proved that the closed loop system satisfies the anticipant performance. The simulation results demonstrate that the control scheme is effective. Keywords: fuzzy T-S model, adaptive fuzzy logic systems, nonlinear systems

    Polymerization of Allyltrimethylisilane and 4-Methyl-1-Pentene by Using Metallocene Catalysts

    No full text
    Polymers of higher olefin, obtained by Ziegler-type polymerization, have been used in some critical fields, e.g., as the membrane for extracorporeal membrane oxygenation (ECMO), which plays an important role in the treatment of patients with severe COVID-19. The polymer obtained by a single-site catalyst, e.g., metallocene catalysts, demonstrated a higher performance. The homo- and co-polymerization of allyltrimethylisilane (ATMS) and 4-methyl-1-pentene (4M1P) were conducted using syndiospecific (cat 1) and isospecific (cat 2) metallocene catalysts. Cat 1 showed low conversions and provided a polymer with a higher molecular weight, while cat 2 behaved oppositely. 13C-NMR spectra certified the stereotacticity of the resultant polymer, and the resonance of the carbon atom of CH2 (αα’) between the two tertiary carbon atoms of the ATMS and 4M1P units were observed. This could be the evidence of the formation of a true copolymer. The crystallization of the polymer was explored using a differential scanning calorimeter (DSC) and wide angle X-ray diffraction (WAXD). All homopolymers and some of the copolymers showed high melting temperatures and low melting enthalpies. The WAXD patterns of the syndiotactic polymer and isotactic homopolymer or the ATMS-rich copolymer were consistent with the reported literature, but the isotactic 4M1P-rich copolymer provided the crystal form I, which is unusual for a 4M1P polymer without any pretreatment
    corecore