46 research outputs found

    Development of Conjunctival Goblet Cells and Their Neuroreceptor Subtype Expression

    Get PDF
    PURPOSE. To investigate expression of muscarinic, cholinergic, and adrenergic receptors on developing conjunctival goblet cells. METHODS. Eyes were removed from rats 9 to 60 days old, fixed, and used for microscopy. For glycoconjugate expression, sections were stained with Alcian blue/periodic acid-Schiff's reagent (AB/PAS) and with the lectins Ulex europeus agglutinin I (UEA-I) and Helix pomatia agglutinin (HPA). Goblet cell bodies were identified using anti-cytokeratin 7 (CK7). Nerve fibers were localized using anti-protein gene product 9.5. Location of muscarinic and adrenergic receptors was investigated using anti-muscarinic and ␤-adrenergic receptors. RESULTS. At days 9 and 13, single apical cells in conjunctival epithelium stained with AB/PAS, UEA-I, and CK7. At days 17 and 60, increasing numbers of goblet cells were identified by AB/PAS, UEA-I, HPA, and CK7. Nerve fibers were localized around stratified squamous cells and at the epithelial base at days 9 and 13, and around goblet cells and at the epithelial base at days 17 and 60. At days 9 and 13, M 2 -and M 3 -muscarinic and ␤ 2 -adrenergic receptors were found in stratified squamous cells, but M 1 -muscarinic and ␤ 1 -adrenergic receptors were not detected. At days 17 and 60, M 2 -and M 3 -muscarinic receptors were found in goblet cells, whereas M 1 -muscarinic receptors were in stratified squamous cells. ␤ 1 -and ␤ 2 -Adrenergic receptors were found on both cell types. ␤ 3 -Adrenergic receptors were not detected. CONCLUSIONS. In conjunctiva, nerves, M 2 -and M 3 -muscarinic, and ␤ 1 -and ␤ 2 -adrenergic receptors are present on developing goblet cells and could regulate secretion as eyelids open. (Invest Ophthalmol Vis Sci. 2000;41:2127-2137 T he tear film mucus layer consists of high molecular weight glycoconjugates including mucins, which are secreted mainly by conjunctival goblet cells. This layer plays an important role in protecting the ocular surface from exogenous agents (bacterial or chemical) and provides lubrication during all types of eye movements. 1 Goblet cells can release their secretory granules in a reflex response mediated by the activation of either parasympathetic or sympathetic nerves that surround them. 2,3 Previous reports from this laboratory showed the localization of nerve fibers adjacent to goblet cells in rat conjunctiva. 5 Use of immunofluorescence techniques demonstrated that M 2 -and M 3 -, but not M 1 -muscarinic acetylcholine receptors (MAchRs), are present on goblet cells and are located on membranes subjacent to secretory granules. VIP type 2 receptors (VIPR2s) are located in the basolateral membranes of goblet cells. 3 Although the role of the sympathetic agonists in stimulating goblet cell secretion is unknown, ␤ 1 -and ␤ 2 -adrenergic receptor (␤AR) subtypes appear to be present in goblet cells as well as in stratified squamous cells. Morphologic studies in developing conjunctiva suggest that based on changes in the acidity of glycoproteins in the secretory granules, goblet cells may differentiate from basal epithelial cells in the forniceal zone. 7 Watanabe et al

    TAT-Mediated Protein Transduction into Human Corneal Epithelial Cells: p15 INK4b Inhibits Cell Proliferation and Stimulates Cell Migration

    No full text
    PURPOSE. The cell cycle inhibitor p15 INK4b has been localized in migrating corneal epithelial cells. In this study, TAT-fusion protein technology was used to transduce p15 INK4b into human corneal epithelial cells to examine the effect on cell proliferation and migration. METHODS. Human p15 INK4b , obtained by RT-PCR, was cloned into a TAT-HA vector, and the fusion protein was purified from bacteria transformed with the TAT-HA-p15 construct. Various dilutions of TAT-HA-p15 were applied to primary human corneal epithelial cells to test potency. In addition, the effect of exposure time was examined. Cells were labeled with bromodeoxyuridine to detect proliferation, and indirect immunofluorescence was performed. Ki67 expression was also examined. To assay cell migration, human corneal epithelial cells were plated inside a cylinder and exposed to TAT-HA-p15. The cylinder was removed, the cells were allowed to spread for 2 days, and the area of cell coverage was calculated. TAT-HA-␤-galactosidase served as the control in all experiments. Finally, the extent of retinoblastoma protein phosphorylation was assayed by Western blot in cells cultured with and without TAT-HA-p15. RESULTS. TAT-HA-p15 was successfully transduced into primary human corneal epithelial cells. TAT-HA-p15 decreased proliferation in a concentration-and time-dependent manner. The migration assay showed that TAT-HA-p15 stimulated cell migration 1.8-fold. TAT-HA-␤-galactosidase had no effect on proliferation or migration. Finally, TAT-HA-p15 decreased the level of phosphorylated retinoblastoma protein by 4.9-fold. CONCLUSIONS. Active p15 INK4b can be efficiently transduced into primary human corneal epithelial cells using TAT-fusion protein technology. p15 INK4b appears to be sufficient to inhibit corneal epithelial cell proliferation and to stimulate cell migration. (Invest Ophthalmol Vis Sci
    corecore