3 research outputs found

    Sensitivity of carbon cycling in the European Alps to changes of climate and land cover

    Get PDF
    Assessments of the impacts of global change on carbon stocks in mountain regions have received little attention to date, in spite of the considerable role of these areas for the global carbon cycle. We used the regional hydro-ecological simulation system RHESSys in five case study catchments from different climatic zones in the European Alps to investigate the behavior of the carbon cycle under changing climatic and land cover conditions derived from the SRES scenarios of the IPCC. The focus of this study was on analyzing the differences in carbon cycling across various climatic zones of the Alps, and to explore the differences between the impacts of various SRES scenarios (A1FI, A2, B1, B2), and between several global circulation models (GCMs, i.e., HadCM3, CGCM2, CSIRO2, PCM). The simulation results indicate that the warming trend generally enhances carbon sequestration in these catchments over the first half of the twenty-first century, particularly in forests just below treeline. Thereafter, forests at low elevations increasingly release carbon as a consequence of the changed balance between growth and respiration processes, resulting in a net carbon source at the catchment scale. Land cover changes have a strong modifying effect on these climate-induced patterns. While the simulated temporal pattern of carbon cycling is qualitatively similar across the five catchments, quantitative differences exist due to the regional differences of the climate and land cover scenarios, with land cover exerting a stronger influence. The differences in the simulations with scenarios derived from several GCMs under one SRES scenario are of the same magnitude as the differences between various SRES scenarios derived from one single GCM, suggesting that the uncertainty in climate model projections needs to be narrowed before accurate impact assessments under the various SRES scenarios can be made at the local to regional scale. We conclude that the carbon balance of the European Alps is likely to shift strongly in the future, driven mainly by land cover changes, but also by changes of the climate. We recommend that assessments of carbon cycling at regional to continental scales should make sure to adequately include sub-regional differences of changes in climate and land cover, particularly in areas with a complex topograph

    Analyzing the carbon dynamics of central European forests: comparison of Biome-BGC simulations with measurements

    Get PDF
    Biogeochemical models are often used for making projections of future carbon dynamics under scenarios of global change. The aim of this study was to assess the accuracy of the process-based biogeochemical model Biome-BGC for application in central European forests from the lowlands to upper treeline as a pre-requisite for environmental impact assessments. We analyzed model behavior along an altitudinal gradient across the alpine treeline, which provided insights on the sensitivity of simulated average carbon pools to changes in environmental factors. A second set of tests included medium-term (30years) simulations of carbon fluxes, and a third set of tests focused on daily carbon and water fluxes. Model results were compared to aboveground biomass measurements, leaf area index recordings as well as net ecosystem exchange (NEE) and actual evapotranspiration (AET) measurements. The simulated medium-term forest growth agreed well with measured data. Also daily NEE fluxes were simulated adequately in most cases. Problems were detected when simulating ecosystems close to the upper timberline (overestimation of measured growth and pool sizes), and when simulating daily AET fluxes (overestimation of measured fluxes). The results showed that future applications of Biome-BGC could benefit much from an improvement of model algorithms (e.g., the Q10 model for respiration) as well as from a detailed analysis of the ecological significance of crucial parameters (e.g., the canopy water interception coefficient

    Sensitivity of carbon cycling in the European Alps to changes of climate and land cover

    No full text
    ISSN:0165-0009ISSN:1573-148
    corecore