242 research outputs found

    „Sexy” Lectures? The Influence of Sexist Content on Attractiveness of Academic Lectures for Students. Analysis of Experiment Results in Natural Conditions at One of Public Universities in Poland

    Get PDF
    The article is aimed at answering the research question concerning a correlation between the use of sexist digressions by academic lecturers and the sense of attractiveness of such lectures among students. An experiment was performed in natural conditions to identify the potential connection between these variables. Two groups participated in the study: an experimental and a control ones, consisting of students from a feminized field of social sciences at one of public universities in Poland. The collected data was analysed using cross tables method. The study has confirmed that lectures “coloured” with sexist jokes are more attractive to students than those without them. These surprising results are the source of hypotheses worth further research

    Doing and undoing gender by women with intellectual disabilities

    Get PDF
    Edyta Zierkiewicz, Beata Cytowska, Doing and undoing gender by women with intellectual disabilities. Interdisciplinary Contexts of Special Pedagogy, no. 26, Poznań 2019. Pp. 271–293. Adam Mickiewicz University Press. ISSN 2300-391X. e-ISSN 2658-283X. DOI: https://doi.org/10.14746/ikps.2019.26.13 The aim of this article is to present socio-cultural processes of doing gender categories in women with intellectual disabilities and to identify barriers and limitations which they face on the way of „becoming women”. The study and its analysis are based on the critical approach. The method of data collection was a participant observation conducted during three proprietary workshops on femininity organized for 17 women with moderate to severe intellectual disabilities (5–6 people in a group), attending an occupational therapy workshop. The aim of our workshops was the empowerment of one’s own femininity and strengthening of processes of doing gender by the participants. The analysis of collected material revealed that the process of shaping gender identities of women with intellectual disability is a subject of social control of the local community. Participants of the workshops are well aware that they are adult women and they strive for the realization of cultural patterns of femininity. In their case, however, these patterns are socially regulated and the women themselves internalize certain limitations imposed by the society during the socialization process. They instinctively “know” what they are allowed to do, and what they cannot gain as women with intellectual disabilities.Edyta Zierkiewicz, Beata Cytowska, Doing and undoing gender by women with intellectual disabilities. Interdisciplinary Contexts of Special Pedagogy, no. 26, Poznań 2019. Pp. 271–293. Adam Mickiewicz University Press. ISSN 2300-391X. e-ISSN 2658-283X. DOI: https://doi.org/10.14746/ikps.2019.26.13 The aim of this article is to present socio-cultural processes of doing gender categories in women with intellectual disabilities and to identify barriers and limitations which they face on the way of „becoming women”. The study and its analysis are based on the critical approach. The method of data collection was a participant observation conducted during three proprietary workshops on femininity organized for 17 women with moderate to severe intellectual disabilities (5–6 people in a group), attending an occupational therapy workshop. The aim of our workshops was the empowerment of one’s own femininity and strengthening of processes of doing gender by the participants. The analysis of collected material revealed that the process of shaping gender identities of women with intellectual disability is a subject of social control of the local community. Participants of the workshops are well aware that they are adult women and they strive for the realization of cultural patterns of femininity. In their case, however, these patterns are socially regulated and the women themselves internalize certain limitations imposed by the society during the socialization process. They instinctively “know” what they are allowed to do, and what they cannot gain as women with intellectual disabilities

    Structures of Clusters Surrounding Ions Stabilized by Hydrogen, Halogen, Chalcogen, and Pnicogen Bonds

    Get PDF
    Four H-binding HCl and HF molecules position themselves at the vertices of a tetrahedron when surrounding a central Cl-. Halogen bonding BrF and ClF form a slightly distorted tetrahedron, a tendency that is amplified for ClCN which forms a trigonal pyramid. Chalcogen bonding SF2, SeF2, SeFMe, and SeCSe occupy one hemisphere of the central ion, leaving the other hemisphere empty. This pattern is repeated for pnicogen bonding PF3, SeF3 and AsCF. The clustering of solvent molecules on one side of the Cl- is attributed to weak attractive interactions between them, including chalcogen, pnicogen, halogen, and hydrogen bonds. Binding energies of four solvent molecules around a central Na+ are considerably reduced relative to chloride, and the geometries are different, with no empty hemisphere. The driving force maximizes the number of electronegative (F or O) atoms close to the Na+, and the presence of noncovalent bonds between solvent molecules

    Competition Between Intra and Intermolecular Triel Bonds. Complexes Between Naphthalene Derivatives and Neutral or Anionic Lewis Bases

    Get PDF
    A TrF2 group (Tr = B, Al, Ga, In, Tl) is placed on one of the α positions of naphthalene, and its ability to engage in a triel bond (TrB) with a weak (NCH) and strong (NC−) nucleophile is assessed by ab initio calculations. As a competitor, an NH2 group is placed on the neighboring Cα, from which point it forms an intramolecular TrB with the TrF2 group. The latter internal TrB reduces the intensity of the π-hole on the Tr atom, decreasing its ability to engage in a second external TrB. The intermolecular TrB is weakened by a factor of about two for the smaller Tr atoms but is less severe for the larger Tl. The external TrB can be quite strong nonetheless; it varies from a minimum of 8 kcal/mol for the weak NCH base, up to as much as 70 kcal/mol for CN−. Likewise, the appearance of an external TrB to a strong base like CN− lessens the ability of the Tr to engage in an internal TrB, to the point where such an intramolecular TrB becomes questionable

    CZTERY POKOLENIA RZECZNICZEK WALKI Z RAKIEM PIERSI W SŁUŻBIE MEDIALNEJ EDUKACJI ZDROWOTNEJ

    Get PDF
    Medialna edukacja raka piersi pojmowana w kategoriach zarówno promocji zdrowia, jak i prewencji choroby, jest obecnie stałym elementem kultury popularnej. W jej realizację zaangażowane są równe grupy społeczne i zawodo- we, a przede wszystkim lekarze, dziennikarze oraz wyleczone pacjentki. W tekście podjęto kwestię zaangażowania się znanych pacjentek w podnoszenie społecznej świadomości raka piersi. Medialną edukację choroby onkologicznej przedstawiono z perspektywy chronologicznej, wyróżniając cztery okresy rzecznictwa raka piersi

    Triel-Bonded Complexes Between TrR3 (Tr = B, Al, Ga; R = H, F, Cl, Br, CH3) and Pyrazine

    Get PDF
    Complexes between TrR3 (Tr = B, Al, Ga; R= H, F, Cl, Br, CH3)molecules and pyrazine have been characterized at the MP2 and CCSD(T) levels of theory. The adducts can be grouped according to the type of molecular arrangement. The first situation places the Tr atom in the plane of the pyrazine ring and contains a triel bond to the N lone pair. For the boron complexes the orbital interaction energy is almost equal to the electrostatic component, while the former is only half the latter for Tr= Al and Ga. The two monomers are stacked above one another in the second configuration, which depends to a greater degree upon orbital interaction and dispersion. The former complexes are more strongly bonded than the latter. Interaction energies (Eint) for the stronger complexes vary between -50 and -20 kcal/mol for BBr3 and Ga(CH3)3paired respectively with pyrazine. Eint is much smaller for the stacked configurations, ranging from -8 for GaF3 to -1.4 kcal/mol for BF3. The value of the maximum of the electrostatic potential correlates poorly with Eint, attributed in part to monomer distortions upon complexation

    Comparison Between Tetrel Bonded Complexes Stabilized by σ and π Hole Interactions

    Get PDF
    The σ-hole tetrel bonds formed by a tetravalent molecule are compared with those involving a π-hole above the tetrel atom in a trivalent bonding situation. The former are modeled by TH4, TH3F, and TH2F2 (T = Si, Ge, Sn) and the latter by TH2=CH2, THF=CH2, and TF2=CH2, all paired with NH3 as Lewis base. The latter π-bonded complexes are considerably more strongly bound, despite the near equivalence of the σ and π-hole intensities. The larger binding energies of the π-dimers are attributed to greater electrostatic attraction and orbital interaction. Each progressive replacement of H by F increases the strength of the tetrel bond, whether σ or π. The magnitudes of the maxima of the molecular electrostatic potential in the two types of systems are not good indicators of either the interaction energy or even the full Coulombic energy. The geometry of the Lewis acid is significantly distorted by the formation of the dimer, more so in the case of the σ-bonded complexes, and this deformation intensifies the σ and π holes

    Regium Bonds Between Mn Clusters (M=Cu,Ag,Au and n=2-6) and Nucleophiles NH3 and HCN

    Get PDF
    The most stable geometries of the coinagemetal (or regium) atom (Cu, Ag, Au) clusters Mn for n up to 6 are all planar, and adopt the lowest possible spin multiplicity. Clusters with even numbers of M atoms are thus singlets, while those with odd n are open-shell doublets. Examination of the molecular electrostatic potential (MEP) of each cluster provides strong indications of the most likely site of attack by an approaching nucleophile, generally one of two positions. A nucleophile (NH3 or HCN) most favorably approaches one particular M atom of each cluster, rather than a bond midpoint or face. In the closed-shell clusters, the interaction energies are highly dependent upon the intensity of the MEP, but this correlation fades for the open-shell systems studied in this work. The strength of the interaction is also closely related to the basicity of the nucleophile. Regium bond energies can be more than 30 kcal/mol and tend to follow the Au \u3e Cu \u3e Ag order. These interaction energies are in large part derived from Coulombic attraction, with a smaller orbital interaction contribution

    Coordination of Anions by Noncovalently Bonded σ-Hole Ligands

    Get PDF
    Research on σ-hole interactions that include halogen, chalcogen, pnicogen, and tetrel bonding has been accelerating in recent years. These cousins of the H-bond have many similar properties, including geometric preferences and energetics. Most of the work to date has focused on neutral complexes, with less known about these bonds to anions. This review summarizes the current state of knowledge about the complexes of anions with ligands that engage in these sorts of noncovalent bonds. Of particular interest are comparisons with H-bonds, and how the geometry of the fully coordinated complex varies as the number of surrounding ligands increases. A specific application of these ideas is explored in which these noncovalent bonds can be used to selectively bind certain anions in a multidentate arrangement, where a symbiotic interplay of experimental and computational methods has provided some useful insights

    Influence of Monomer Deformation on the Competition Between Two Types of σ-Holes in Tetrel Bonds

    Get PDF
    One of several tetrel (T) atoms was covalently attached to three F atoms and a substituted phenyl ring. A NH3 base can form a tetrel bond with TF3C6H2R3(T = Si, Ge, Sn, Pb; R = H, F, CH3) in a position opposite either an F atom or the ring. The σ-hole opposite the highly electron-withdrawing F (T-F) is more intense than that opposite the ring (T-C). However, when the Lewis base deforms from a tetrahedral to a trigonal bipyramidal shape so as to accommodate the base, it is the T-C σ-hole that is more intense. Accordingly, it is the T-C tetrel-bonded complex for which there is a larger interaction energy with NH3, as high as 34 kcal/mol. Countering this trend, it requires more energy for the TF3C6H2R3 to deform into the geometry it adopts within the T-C complex than within its T-F counterpart. There is consequently a balance between the overall binding energies of the two competing sites. The smaller tetrel atoms Si and Ge, with their larger deformation energies, show a preference for T-F tetrel binding, while the T-C site is preferred by Pb which suffers from a smaller degree of deformation energy. There is a near balance for T=Sn and the two sites show comparable binding energies
    corecore