14,778 research outputs found
Geodynamo alpha-effect derived from box simulations of rotating magnetoconvection
The equations for fully compressible rotating magnetoconvection are
numerically solved in a Cartesian box assuming conditions roughly suitable for
the geodynamo. The mean electromotive force describing the generation of mean
magnetic flux by convective turbulence in the rotating fluid is directly
calculated from the simulations, and the corresponding alpha-coefficients are
derived. Due to the very weak density stratification the alpha-effect changes
its sign in the middle of the box. It is positive at the top and negative at
the bottom of the convection zone. For strong magnetic fields we also find a
clear downward advection of the mean magnetic field. Both of the simulated
effects have been predicted by quasi-linear computations (Soward, 1979;
Kitchatinov and Ruediger, 1992). Finally, the possible connection of the
obtained profiles of the EMF with mean-field models of oscillating
alpha^2-dynamos is discussed.Comment: 17 pages, 9 figures, submitted to Phys. Earth Planet. Inte
Dielectric function and plasmons in graphene
The electromagnetic response of graphene, expressed by the dielectric
function, and the spectrum of collective excitations are studied as a function
of wave vector and frequency. Our calculation is based on the full band
structure, calculated within the tight-binding approximation. As a result, we
find plasmons whose dispersion is similar to that obtained in the single-valley
approximation by Dirac fermions. In contrast to the latter, however, we find a
stronger damping of the plasmon modes due to inter-band absorption. Our
calculation also reveals effects due to deviations from the linear Dirac
spectrum as we increase the Fermi energy, indicating an anisotropic behavior
with respect to the wave vector of the external electromagnetic field
Early-type Galaxies in the Cluster Abell 2390 at z=0.23
To examine the evolution of the early-type galaxy population in the rich
cluster Abell 2390 at z=0.23 we have gained spectroscopic data of 51 elliptical
and lenticular galaxies with MOSCA at the 3.5 m telescope on Calar Alto
Observatory. This investigation spans both a broad range in luminosity
(-19.3>M_B>-22.3) and uses a wide field of view of 10'x10', therefore the
environmental dependence of different formation scenarios can be analysed in
detail as a function of radius from the cluster centre. Here we present results
on the surface brightness modelling of galaxies where morphological and
structural information is available in the F814W filter aboard the Hubble Space
Telescope (HST) and investigate for this subsample the evolution of the
Fundamental Plane.Comment: 5 pages, 5 figures, to appear in "Carnegie Observatories Astrophysics
Series, Vol. 3: Clusters of Galaxies: Probes of Cosmological Structure and
Galaxy Evolution", ed. J. S. Mulchaey, A. Dressler, and A. Oemler (Pasadena:
Carnegie Observatories,
http://www.ociw.edu/ociw/symposia/series/symposium3/proceedings.html
Integer Quantum Hall Effect for Lattice Fermions
A two-dimensional lattice model for non-interacting fermions in a magnetic
field with half a flux quantum per plaquette and levels per site is
considered. This is a model which exhibits the Integer Quantum Hall Effect
(IQHE) in the presence of disorder. It presents an alternative to the
continuous picture for the IQHE with Landau levels. The large limit can be
solved: two Hall transitions appear and there is an interpolating behavior
between the two Hall plateaux. Although this approach to the IQHE is different
from the traditional one with Landau levels because of different symmetries
(continuous for Landau levels and discrete here), some characteristic features
are reproduced. For instance, the slope of the Hall conductivity is infinite at
the transition points and the electronic states are delocalized only at the
transitions.Comment: 9 pages, Plain-Te
Equivalence of domains for hyperbolic Hubbard-Stratonovich transformations
We settle a long standing issue concerning the traditional derivation of
non-compact non-linear sigma models in the theory of disordered electron
systems: the hyperbolic Hubbard-Stratonovich (HS) transformation of
Pruisken-Schaefer type. Only recently the validity of such transformations was
proved in the case of U(p,q) (non-compact unitary) and O(p,q) (non-compact
orthogonal) symmetry. In this article we give a proof for general non-compact
symmetry groups. Moreover we show that the Pruisken-Schaefer type
transformations are related to other variants of the HS transformation by
deformation of the domain of integration. In particular we clarify the origin
of surprising sign factors which were recently discovered in the case of
orthogonal symmetry.Comment: 30 pages, 3 figure
Cross-section measurement of the Ba 130 (p,γ) La 131 reaction for γ -process nucleosynthesis
Background: Deviations between experimental data of charged-particle-induced reactions and calculations within the statistical model are frequently found. An extended data base is needed to address the uncertainties regarding the nuclear-physics input parameters in order to understand the nucleosynthesis of the neutron-deficient p nuclei. Purpose: A measurement of total cross-section values of the Ba130(p,γ)La131 reaction at low proton energies allows a stringent test of statistical model predictions with different proton+nucleus optical model potentials. Since no experimental data are available for proton-capture reactions in this mass region around A ≈130, this measurement can be an important input to test the global applicability of proton+nucleus optical model potentials. Method: The total reaction cross-section values were measured by means of the activation method. After the irradiation with protons, the reaction yield was determined by use of γ-ray spectroscopy using two clover-type high-purity germanium detectors. In total, cross-section values for eight different proton energies could be determined in the energy range between 3.6 MeV ≤Ep≤ 5.0 MeV, thus, inside the astrophysically relevant energy region. Results: The measured cross-section values were compared to Hauser-Feshbach calculations using the statistical model codes TALYS and SMARAGD with different proton+nucleus optical model potentials. With the semimicroscopic JLM proton+nucleus optical model potential used in the SMARAGD code, the absolute cross-section values are reproduced well, but the energy dependence is too steep at the lowest energies. The best description is given by a TALYS calculation using the semimicroscopic Bauge proton+nucleus optical model potential using a constant renormalization factor. Conclusions: The statistical model calculation using the Bauge semimicroscopic proton+nucleus optical model potential deviates by a constant factor of 2.1 from the experimental data. Using this model, an experimentally supported stellar reaction rate for proton capture on the p nucleus Ba130 was calculated. At astrophysical temperatures, an increase in the stellar reaction rate of 68% compared to rates obtained from the widely used NON-SMOKER code is found. This measurement extends the scarce experimental data base for charged-particle-induced reactions, which can be helpful to derive a more globally applicable proton+nucleus optical model potential.Peer reviewedFinal Accepted Versio
On the fundamental group of the complement of a complex hyperplane arrangement
We construct two combinatorially equivalent line arrangements in the complex
projective plane such that the fundamental groups of their complements are not
isomorphic. The proof uses a new invariant of the fundamental group of the
complement to a line arrangement of a given combinatorial type with respect to
isomorphisms inducing the canonical isomorphism of the first homology groups.Comment: 12 pages, Latex2e with AMSLaTeX 1.2, no figures; this last version is
almost the same as published in Functional Analysis and its Applications 45:2
(2011), 137-14
Correlations in Systems of Complex Directed Macromolecules
An ensemble of directed macromolecules on a lattice is considered, where the
constituting molecules are chosen as a random sequence of N different types.
The same type of molecules experiences a hard-core (exclusion) interaction. We
study the robustness of the macromolecules with respect to breaking and
substituting individual molecules, using a 1/N expansion. The properties depend
strongly on the density of macromolecules. In particular, the macromolecules
are robust against breaking and substituting at high densities.Comment: 9 pages, 4 figure
Scanning tunneling microscopy and kinetic Monte Carlo investigation of Cesium superlattices on Ag(111)
Cesium adsorption structures on Ag(111) were characterized in a
low-temperature scanning tunneling microscopy experiment. At low coverages,
atomic resolution of individual Cs atoms is occasionally suppressed in regions
of an otherwise hexagonally ordered adsorbate film on terraces. Close to step
edges Cs atoms appear as elongated protrusions along the step edge direction.
At higher coverages, Cs superstructures with atomically resolved hexagonal
lattices are observed. Kinetic Monte Carlo simulations model the observed
adsorbate structures on a qualitative level.Comment: 8 pages, 7 figure
Cooling Flow Star Formation and the Apparent Stellar Ages of Elliptical Galaxies
Observational constraints and theoretical arguments indicate that cooled
interstellar gas in bright elliptical galaxies forms into a young stellar
population throughout the region within the half-light radius. The young
population has a bottom-heavy, but optically luminous IMF extending to 1 - 2
M_sun. When the colors and spectral features of this young population are
combined with those of the underlying old stellar population, the apparent ages
are significantly reduced, similar to the relatively young apparent ages
observed in many ellipticals. Galactic mergers are not required to resupply
young stars. The sensitivity of continuous star formation to L_B and L_x/L_B is
likely to account for the observed spread in apparent ages among elliptical
galaxies. Local star formation is accompanied by enhanced stellar H_beta
equivalent widths, stronger optical emission lines, enhanced thermal X-ray
emission and lower apparent temperatures in the hot gas. The young stars should
cause M/L to vary with galactic radius, perturbing the fundamental plane
occupied by the old stars.Comment: 6 pages with 2 figures; accepted by Astrophysical Journal Letter
- …