4 research outputs found

    Groovy and Gnarly: Surface Wrinkles as a Multifunctional Motif for Terrestrial and Marine Environments

    Get PDF
    From large ventral pleats of humpback whales to nanoscale ridges on flower petals, wrinkled structures are omnipresent, multifunctional, and found at hugely diverse scales. Depending on the particulars of the biological system—its environment, morphology, and mechanical properties—wrinkles may control adhesion, friction, wetting, or drag; promote interfacial exchange; act as flow channels; or contribute to stretching, mechanical integrity, or structural color. Undulations on natural surfaces primarily arise from stress-induced instabilities of surface layers (e.g., buckling) during growth or aging. Variation in the material properties of surface layers and in the magnitude and orientation of intrinsic stresses during growth lead to a variety of wrinkling morphologies and patterns which, in turn, reflect the wide range of biophysical challenges wrinkled surfaces can solve. Therefore, investigating how surface wrinkles vary and are implemented across biological systems is key to understanding their structure-function relationships. In this work, we synthesize the literature in a metadata analysis of surface wrinkling in various terrestrial and marine organisms to review important morphological parameters and classify functional aspects of surface wrinkles in relation to the size and ecology of organisms. Building on our previous and current experimental studies, we explore case studies on nano/micro-scale wrinkles in biofilms, plant surfaces, and basking shark filter structures to compare developmental and structure-vs-function aspects of wrinkles with vastly different size scales and environmental demands. In doing this and by contrasting wrinkle development in soft and hard biological systems, we provide a template of structure-function relationships of biological surface wrinkles and an outlook for functionalized wrinkled biomimetic surfaces

    Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales

    Get PDF
    © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.A.P.G.C. and P.R.F. acknowledge the funding from Fundação para a Ciência e Tecnologia (Portugal), through IDMEC, under LAETA project UIDB/50022/2020. T.H.V.P. acknowledges the funding from Fundação para a Ciência e Tecnologia (Portugal), through Ph.D. Grant 2020.04417.BD. A.S. acknowledges that this work was partially supported by the ATTRACT Investigator Grant (no. A17/MS/11572821/MBRACE, to A.S.) from the Luxembourg National Research Fund. The author thanks Gerardo Ceada for his help in the graphical representations. N.A.K. acknowledges support from the European Research Council (grant 851960) and the Gravitation Program “Materials Driven Regeneration,” funded by the Netherlands Organization for Scientific Research (024.003.013). M.B.A. acknowledges support from the French National Research Agency (grant ANR-201-8-CE1-3-0008 for the project “Epimorph”). G.E.S.T. acknowledges funding by the Australian Research Council through project DP200102593. A.C. acknowledges the funding from the Deutsche Forschungsgemeinschaft (DFG) Emmy Noether Grant CI 203/-2 1, the Spanish Ministry of Science and Innovation (PID2021-123013O-BI00) and the IKERBASQUE Basque Foundation for Science.Peer reviewe

    Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales

    No full text
    Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes. © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.Fundação para a Ciência e Tecnologia. Portugal UIDB/50022/2020, 2020.04417Luxembourg National Research Fund A17/MS/11572821/MBRACEEuropean Research Council (ERC) 851960Netherlands Organization for Scientific Research 024.003.013French National Research Agency ANR-201-8-CE1-3-0008Australian Research Council DP200102593Deutsche Forschungsgemeinschaft (DFG) CI 203/-2 1Ministerio de Ciencia e Innovación (MICIN). España PID2021- 123013O-BI0

    Quellen- und Literaturverzeichnis

    No full text
    corecore