8 research outputs found

    Comparison of The Kois Dento-Facial Analyzer System with an Earbow for Mounting a Maxillary Cast

    Get PDF
    Statement of problem: The Kois Dento-Facial Analyzer System (KDFA) is used by clinicians to mount maxillary casts and evaluate and treat patients. Limited information is available for understanding whether the KDFA should be considered as an alternative to an earbow. Purpose: The purpose of this study was to evaluate maxillary casts mounted using the KDFA with casts mounted using Panadent\u27s Pana-Mount Facebow (PMF). Both articulation methods were compared against a lateral cephalometric radiograph. Material and methods: Fifteen dried human skulls were used. Lateral cephalometric radiographs and 2 maxillary impressions were made of each skull. One cast from each skull was mounted on an articulator by means of the KDFA and the other by using the PMF. A standardized photograph of each articulation was made, and the distance from the articular center to the incisal edge position and the occlusal plane angle were measured. The distance from condylar center to the incisal edge and the occlusal plane angle were measured from cephalometric radiographs. Finally, the 3-dimensional position of each articulation was determined with a Panadent CPI-III. A randomized complete block design analysis of variance (RCBD) and post hoc tests (Tukey-Kramer HSD) (α=.05) were used to evaluate the occlusal plane angle and axis-central incisor distance. A paired 2-sample t test for means (α=.05) was used to compare the X, Y, and Z distance at the right and left condyle. Results: The KDFA and PMF mounted the maxillary cast in a position that was not statistically different from the skull when comparing the occlusal plane angle (P=.165). Both the KDFA and the PMF located the maxillary central incisor edge position in a significantly different position compared with the skull (P=.001) but were not significantly different from each other. The 3-dimensional location of the maxillary casts varied at the condyles by approximately 9 to 10.3 mm. Conclusion: The KDFA mounted the maxillary cast in a position that was not statistically different from the PMF when comparing the incisal edge position and the occlusal plane angle. Both the KDFA and the PMF located the maxillary incisal edge position in a significantly different position compared with the anatomic position on dried human skulls

    Evaluation of Die Trim Morphology Made by CAD-CAM Technology

    Get PDF
    Statement of problem The die contour can affect the emergence profile of prosthetic restorations. However, little information is available regarding the congruency between a stereolithographic (SLA) die and its corresponding natural tooth. Purpose The purpose of this vitro study was to evaluate the shapes of SLA die in comparison with the subgingival contour of a prepared tooth to be restored with a ceramic crown. Material and methods Twenty extracted human teeth, 10 incisors, and 10 molars, were disinfected and mounted in a typodont model. The teeth were prepared for a ceramic restoration. Definitive impressions were made using an intraoral scanner from which 20 SLA casts with removable dies were fabricated. The removable dies and corresponding human teeth were digitized using a 3-dimensional desktop scanner and evaluated with computer-aided design software. The subgingival morphology with regard to angle, length, and volume at the buccolingual and mesiodistal surfaces and at zones A, B, C, and D were compared. Data were first analyzed with repeated measures analysis of variance (ANOVA), using locations (buccolingual and mesiodistal), zones (A, B, C, and D), and model type (SLA and Natural) as within-subject factors and tooth type (molar and incisor) as the between-subject factor. Post hoc analyses were performed to investigate the difference between natural teeth and corresponding SLA models, depending upon the interaction effect from the repeated measures ANOVA (α=.05). Results For angle analysis, the incisor group demonstrated a significant difference between the natural tooth and SLA die on the buccolingual surfaces (PPPPPP Conclusions For the comparison of angles, SLA dies did not replicate the subgingival contour of natural teeth on the buccolingual surfaces of the incisal groups. For the comparison of length and volume, SLA dies were more concave and did not replicate the subgingival contour of natural teeth in the incisal and molar groups

    Mechanical Behavior and Failure Analysis of Prosthetic Retaining Screws after Long‐Term Use In Vivo. Part 2: Metallurgical and Microhardness Analysis

    Get PDF
    Abstract Purpose: This study involved testing and analyzing multiple retrieved prosthetic retaining screws after long‐term use in vivo to: (1) detect manufacturing defects that could affect in‐service behavior; (2) characterize the microstructure and alloy composition; and (3) further characterize the wear mechanism of the screw threads. Materials and Methods: Two new (control) screws from Nobel Biocare (NB) and 18 used (in service 18–120 months) retaining screws [12 from NB and 6 from Sterngold (SG)] were: (1) metallographically examined by light microscopy and scanning electron microscopy (SEM) to determine the microstructure; (2) analyzed by energy dispersive X‐ray (EDX) microanalysis to determine the qualitative and semiquantitative average alloy and individual phase compositions; and (3) tested for Vickers microhardness. Results: Examination of polished longitudinal sections of the screws using light microscopy revealed a significant defect in only one Group 4 screw. No significant defects in any other screws were observed. The defect was considered a “seam” originating as a “hot tear” during original casting solidification of the alloy. Additionally, the examination of longitudinal sections of the screws revealed a uniform homogeneous microstructure in some groups, while in other groups the sections exhibited rows of second phase particles. The screws for some groups demonstrated severe deformation of the lower threads and the bottom part of the screw leading to the formation of crevices and grooves. Some NB screws were comprised of Au‐based alloy with Pt, Cu, and Ag as alloy elements, while others (Groups 4 and 19) were Pd‐based with Ga, Cu, and Au alloy elements. The microstructure was homogeneous with fine or equiaxed grains for all groups except Group 4, which appeared inhomogeneous with anomalous grains. SG screws demonstrated a typical dendritic structure and were Au‐based alloy with Cu and Ag alloy elements. There were differences in the microhardness of gold alloy screws from NB and SG as well as palladium alloy screws from NB. Conclusions: Significant differences within NB retaining screws and between NB and SG screws were found for microstructure, major alloy constituents, and microhardness

    Mechanical Behavior and Failure Analysis of Prosthetic Retaining Screws after Long‐term Use in vivo. Part 4: Failure Analysis of 10 Fractured Retaining Screws Retrieved from Three Patients

    Get PDF
    Purpose: The aim of this study was to perform a failure analysis on fractured prosthetic retaining screws after long‐term use in vivo. Additionally, the study addresses the commonly asked question regarding whether complex repeated functional occlusal forces initiate fatigue‐type cracks in prosthetic retaining screws. Materials and Methods: Ten fractured prosthetic retaining screws retrieved from three patients treated with fixed detachable hybrid prostheses were subjected to a failure analysis. In patients 1 and 2, the middle three retaining screws of the prostheses were found fractured at retrieval time after they had been in service for 20 and 19 months, respectively. In patient 3, the middle three and one of the posterior retaining screws were found to be fractured at retrieval after they had been in service for 18 months. Low power stereomicroscopy and high‐power scanning electron microscopy (SEM) were performed to analyze the fractured surfaces of the retaining screws examining fatigue cracks in greater detail. Results: Typical fatigue failure characterized by ratchet mark formation was revealed by light microscopy and SEM for all examined screws. Using low magnification light microscopy, ratchet marks were visible on the fracture surfaces of only two screws. SEM examination revealed all three classical stages of fatigue failure, and it was possible to see the ratchet marks on the fracture surfaces of all specimens, indicating a fatigue zone. The final catastrophic overload fracture appeared fibrous, indicating ductile fracture. The final overload ductile fracture surfaces showed equiaxed dimples, suggesting tensile overload in all examined screws except in two specimens that showed an elongated dimple pattern indicating shear/tearing overload forces. Conclusions: Fracture of prosthetic retaining screws in hybrid prostheses occurs mainly through a typical fatigue mode involving mostly the middle anterior three screws. Fatigue cracks can grow in more than one prosthetic retaining screw, leading to fracture before the patient or clinician determines that any problem exists

    Mechanical Behavior and Failure Analysis of Prosthetic Retaining Screws after Long‐term Use In Vivo. Part 1: Characterization of Adhesive Wear and Structure of Retaining Screws

    Get PDF
    Purpose: The general aim of this study and those presented in Parts 2–4 of this series was to characterize the structure, properties, wear, and fracture of prosthetic retaining screws in fixed detachable hybrid prostheses after long‐term use in vivo. This part of the overall investigation addresses whether there are differences in thread wear between the screws closest to the fulcrum and those that are farthest from the fulcrum in fixed detachable hybrid prostheses. Materials and Methods: The total number of prosthetic retaining screws used in this study was 100 (10 new and 90 used). New screws (controls) from Nobel Biocare (NB) were divided into Group 1 (slotted) and Group 2 (hexed). Ninety used screws (in service 18–120 months) were retrieved from fixed detachable hybrid prostheses in 18 patients (5 screws from each patient, 60 from NB and 30 from Sterngold). The used screws were divided into 18 groups. Additionally, each group was subdivided into A and B categories. Category A contained the middle three prosthetic screws, which were considered the farthest screws from the fulcrum line. Category B contained the most posterior two screws, which were considered the screws closest to the fulcrum line. All 100 screws were subjected to thorough, nondestructive testing. Results: Light and scanning electron microscopic examination of all used screws for each group revealed surface deterioration of the active profile of the screw threads consistent with adhesive wear. The observed thread profile deterioration ranged from mild to severe. The wear was aggressive enough to cause galling, which led to thinning of the threads and, in severe cases, to knife‐edges at thread crests. In ten groups, the most anterior three screws exhibited more wear than the most posterior two screws. In addition to thread wear, severe plastic deformation was detected on the bottom part of each screw for three groups, and a long external longitudinal crack was detected in one screw of Group 2. Conclusions: The findings of this study and those presented in Parts 2–4 demonstrate that different retaining screws from the same manufacturer and/or from different manufacturers have different geometrical design, microstructures, major alloy constituents, and microhardness, and that these differences influence their preload and fractured load values. In this part of the overall investigation, the occurrence of galling as a result of wear involving prosthetic retaining screws appears to be an inevitable and unavoidable consequence of long‐term use in vivo in fixed detachable hybrid prostheses regardless of the intended/original preload value. The galling rate is greater on the middle three screws compared to the most posterior two screws in fixed detachable hybrid prostheses. The wear pattern is consistent with an adhesive wear mechanism; however, this study does not provide enough data to support a definitive analysis

    Mechanical Behavior and Failure Analysis of Prosthetic Retaining Screws after Long‐term Use In Vivo. Part 3: Preload and Tensile Fracture Load Testing

    Get PDF
    Purpose: The aim of this study was to determine the preload and tensile fracture load values of prosthetic retaining screws after long‐term use in vivo compared to unused screws (controls). Additionally, the investigation addressed whether the preload and fracture load values of prosthetic retaining screws reported by the manufacturer become altered after long‐term use in vivo. Materials and Methods: For preload testing, 10 new screws (controls) from Nobel Biocare (NB) and 73 used retaining screws [58 from NB and 15 from Sterngold (SG)] were subjected to preload testing. For tensile testing, eight controls from NB and 58 used retaining screws (46 from NB and 12 from SG) were subjected to tensile testing. Used screws for both tests were in service for 18–120 months. A custom load frame, load cell, and torque wrench setup were used for preload testing. All 83 prosthetic screws were torqued once to 10 Ncm, and the produced preload value was recorded (N) using an X–Y plotter. Tensile testing was performed on a universal testing machine and the resulting tensile fracture load value was recorded (N). Preload and tensile fracture load values were analyzed with 2‐way ANOVA and Tukey post‐hoc tests. Results: There was a significant difference between preload values for screws from NB and screws from SG (p \u3c 0.001). The preload values for gold alloy screws from NB decreased as the number of years in service increased. There was a significant difference between tensile fracture values for the three groups (gold alloy screws from NB and SG and palladium alloy screws from NB) at p \u3c 0.001. The tensile fracture values for gold alloy screws from NB and SG decreased as the number of years in service increased. Conclusions: In fixed detachable hybrid prostheses, perhaps as a result of galling, the intended preload values of prosthetic retaining screws may decrease with increased in‐service time. The reduction of the fracture load value may be related to the increase of in‐service time; however, the actual determination of this relationship is not possible from this study alone

    Accuracy of Successive Casts for Full-Arch Fixed Prostheses

    Full text link
    This clinically simulated study examined the accuracy of full-arch impression materials using successive casts reproduced from single impressions. Materials tested included a polyether polyvinyl siloxane, medium viscosity material, and putty wash. Maxillary full-arch Dentoform models were created with four abutments prepared for complete crowns. Six impressions of each material produced successive first and second generation casts. Individual cast copings were then fabricated and assembled into full-arch fixed dental prostheses. Marginal discrepancies were measured on both the casts and Dentoform. Data analysis suggests insignificant differences between successive casts. However, among second generation casts, clinically similar marginal discrepancies were exhibited. Outcomes demonstrated that second generation casts enabled fabrication and assembly of full-arch restorations that were clinically equivalent to first generation casts obtained. Int J Prosthodont 2010; 23: 446-449
    corecore