6 research outputs found
Safety and efficacy of the supreme biodegradable polymer sirolimus-eluting stent in patients with diabetes mellitus
Patients with diabetes mellitus (DM) have worse outcomes following percutaneous coronary intervention than nondiabetic patients. The novel Supreme DES is a biodegradable polymer sirolimus-eluting stent designed to synchronize early drug delivery, limiting the potential for long-term inflammatory response. The purpose of this study was to evaluate the safety and efficacy of the Supreme DES in patients with DM. Methods This is a prespecified analysis of the diabetic subgroup from the PIONEER III randomized (2:1), controlled trial, comparing the Supreme DES with a durable polymer everolimus-eluting stent (DP-EES). The primary safety and efficacy composite endpoint was target lesion failure at 1 year, a composite of cardiac death, target vessel myocardial infarction, or clinically driven target lesion revascularization. Results The PIONEER III trial randomized 1629 patients, of which 494 (30.3%) had DM with 331 (398 lesions) randomly assigned to Supreme DES and 163 (208 lesions) to DP-EES. Among patients with DM, target lesion failure at 1 year was 6.1% (20/331) with Supreme DES vs 3.7% (6/163) with DP-EES (hazard ratio = 1.65; 95% confidence interval = 0.66-4.10, P = .28). The composite of cardiac death or target vessel myocardial infarction was 3.3% (11/331) with Supreme DES and 3.7% (6/163) with DP-EES (hazard ratio = 0.90; 95% confidence interval = 0.33-2.44, P = .83). There were no significant differences in other secondary endpoints. Conclusions This prespecified substudy of the PIONEER III trial demonstrated the relative safety and efficacy of the novel Supreme DES when compared with commercially available DP-EES in diabetics at 1 year. Longer term follow-up will be required to ensure continued safety and efficacy of the Supreme DES
Nicotinic acid-adenine dinucleotide phosphate activates the skeletal muscle ryanodine receptor.
Calcium is a universal second messenger. The temporal and spatial information that is encoded in Ca(2+)-transients drives processes as diverse as neurotransmitter secretion, axonal outgrowth, immune responses and muscle contraction. Ca(2+)-release from intracellular Ca(2+) stores can be triggered by diffusible second messengers like Ins P (3), cyclic ADP-ribose or nicotinic acid-adenine dinucleotide phosphate (NAADP). A target has not yet been identified for the latter messenger. In the present study we show that nanomolar concentrations of NAADP trigger Ca(2+)-release from skeletal muscle sarcoplasmic reticulum. This was due to a direct action on the Ca(2+)-release channel/ryanodine receptor type-1, since in single channel recordings, NAADP increased the open probability of the purified channel protein. The effects of NAADP on Ca(2+)-release and open probability of the ryanodine receptor occurred over a similar concentration range (EC(50) approximately 30 nM) and were specific because (i) they were blocked by Ruthenium Red and ryanodine, (ii) the precursor of NAADP, NADP, was ineffective at equimolar concentrations, (iii) NAADP did not affect the conductance and reversal potential of the ryanodine receptor. Finally, we also detected an ADP-ribosyl cyclase activity in the sarcoplasmic reticulum fraction of skeletal muscle. This enzyme was not only capable of synthesizing cyclic GDP-ribose but also NAADP, with an activity of 0.25 nmol/mg/min. Thus, we conclude that NAADP is generated in the vicinity of type 1 ryanodine receptor and leads to activation of this ion channel
Targeted High-Throughput Sequencing Identifies Mutations in atlastin-1 as a Cause of Hereditary Sensory Neuropathy Type I
Hereditary sensory neuropathy type I (HSN I) is an axonal form of autosomal-dominant hereditary motor and sensory neuropathy distinguished by prominent sensory loss that leads to painless injuries. Unrecognized, these can result in delayed wound healing and osteomyelitis, necessitating distal amputations. To elucidate the genetic basis of an HSN I subtype in a family in which mutations in the few known HSN I genes had been excluded, we employed massive parallel exon sequencing of the 14.3 Mb disease interval on chromosome 14q. We detected a missense mutation (c.1065C>A, p.Asn355Lys) in atlastin-1 (ATL1), a gene that is known to be mutated in early-onset hereditary spastic paraplegia SPG3A and that encodes the large dynamin-related GTPase atlastin-1. The mutant protein exhibited reduced GTPase activity and prominently disrupted ER network morphology when expressed in COS7 cells, strongly supporting pathogenicity. An expanded screen in 115 additional HSN I patients identified two further dominant ATL1 mutations (c.196G>C [p.Glu66Gln] and c.976 delG [p.Val326TrpfsX8]). This study highlights an unexpected major role for atlastin-1 in the function of sensory neurons and identifies HSN I and SPG3A as allelic disorders