32 research outputs found

    Hydrogen Motion in Magnesium Hydride by NMR

    Get PDF
    In coarse-grained MgH2, the diffusive motion of hydrogen remains too slow (<10^5 hops s^−1) to narrow the H NMR line up to 400 °C. Slow-motion dipolar relaxation time T1D measurements reveal the motion, with hopping rate ωH from 0.1 to 430 s^−1 over the range of 260 to 400 °C, the first direct measurement of H hopping in MgH2. The ωH data are described by an activation energy of 1.72 eV (166 kJ/mol) and attempt frequency of 2.5 × 10^15 s^−1. In ball-milled MgH2 with 0.5 mol % added Nb2O5 catalyst, line-narrowing is evident already at 50 °C. The line shape shows distinct broad and narrow components corresponding to immobile and mobile H, respectively. The fraction of mobile H grows continuously with temperature, reaching ∼30% at 400 °C. This demonstrates that this material’s superior reaction kinetics are due to an increased rate of H motion, in addition to the shorter diffusion paths from ball-milling. In ball-milled MgH2 without additives, the line-narrowed component is weaker and is due, at least in part, to trapped H2 gas. The spin−lattice relaxation rates T1^−1 of all materials are compared, with ball-milling markedly increasing T1^−1. The weak temperature dependence of T1^−1 suggests a mechanism with paramagnetic relaxation centers arising from the mechanical milling

    Synthesis, Characterization, and Atomistic Modeling of Stabilized Highly Pyrophoric Al(BH_4)_3 via the Formation of the Hypersalt K[Al(BH_4)_4]

    Get PDF
    The recent discovery of a new class of negative ions called hyperhalogens allows us to characterize this complex as belonging to a unique class of materials called hypersalts. Hyperhalogen materials are important while serving as the building blocks for the development of new materials having enhanced magnetic or oxidative properties. One prime example of a hydperhalogen is the Al(BH_4)_4^– anion. Aluminum borohydride (17 wt % H) in itself is a volatile, pyrophoric compound that has a tendency to release diborane at room temperature, making its handling difficult and very undesirable for use in practical applications. Here we report that the combination of Al(BH_4)_3 with the alkaline metal borohydride KBH_4 results in the formation of a new compound KAl(BH_4)_4 which is a white solid that exhibits remarkable thermal stability up to 154 °C and has the typical makeup of a hypersalt material. Using a variety of characterization tools and theoretical calculations, we study and analyze the physical characteristics of this compound and show its potential for stabilizing high hydrogen capacity, energetic materials

    NMR Studies of the Hydrogen Storage Compound NaMgH_3

    Get PDF
    Hydrogen and ^(23)Na NMR were performed to 400 °C on NaMgH3 powder produced by reactive ball-milling of NaH and MgH2. The H resonance shows narrowing already at 100 °C as a narrow line superimposed on the broad, rigid-lattice signal. With increasing temperature, the fraction of spins in the narrow component grows smoothly, approaching 100% near 275 °C. This heterogeneous narrowing suggests a wide distribution of H motion rates. After annealing at 400 °C, the narrow component intensity at temperatures below 200 °C was substantially reduced and both H and ^(23)Na relaxation rates 1/T_1 were decreased. Thus, it appears that the high rates of H motion, particularly on first heating, are due to regions with poorly organized crystal structure. If this disorder could be maintained, this might be an avenue toward improved reaction kinetics of this or other hydrides. In the annealed sample, the activation energy for H diffusion is approximately 95 kJ/mol
    corecore