150 research outputs found

    Using frequency analysis and Grover's algorithm to implement known ciphertext attack on symmetric ciphers

    Get PDF
    In this paper we construct quantum circuit implementing known ciphertext attack on symmetric cipher. We assume that plaintext is in natural language and have known letter distribution. Our method allows to find key using one query to (quantum) decryption oracle and has O(√{pipe}K{pipe}) time complexity, where K-set of possible keys. © 2013 Pleiades Publishing, Ltd

    From graphs to keyed quantum hash functions

    Get PDF
    Β© 2016, Pleiades Publishing, Ltd.We present two new constructions of quantum hash functions: the first based on expander graphs and the second based on extractor functions and estimate the amount of randomness that is needed to construct them. We also propose a keyed quantum hash function based on extractor function that can be used in quantum message authentication codes and assess its security in a limited attacker model

    Physics discovery in nanoplasmonic systems via autonomous experiments in Scanning Transmission Electron Microscopy

    Full text link
    Physics-driven discovery in an autonomous experiment has emerged as a dream application of machine learning in physical sciences. Here we develop and experimentally implement a deep kernel learning workflow combining the correlative prediction of the target functional response and its uncertainty from the structure, and physics-based selection of acquisition function, which autonomously guides the navigation of the image space. Compared to classical Bayesian optimization methods, this approach allows to capture the complex spatial features present in the images of realistic materials, and dynamically learn structure-property relationships. In combination with the flexible scalarizer function that allows to ascribe the degree of physical interest to predicted spectra, this enables physical discovery in automated experiment. Here, this approach is illustrated for nanoplasmonic studies of nanoparticles and experimentally implemented in a truly autonomous fashion for bulk- and edge plasmon discovery in MnPS3, a lesser-known beam-sensitive layered 2D material. This approach is universal, can be directly used as-is with any specimen, and is expected to be applicable to any probe-based microscopic techniques including other STEM modalities, Scanning Probe Microscopies, chemical, and optical imaging

    New automata definition of language for game development

    Get PDF
    Β© 2016 Taylor & Francis Group, London.In this paper, we describe a novel Domain-Specific Language (DSL), which is useful for describing AI in games. This DSL is based on a firm theoretical ground of finite automata theory. We provide full specification of the language and discuss the optimized implementation. We use this DSL in the development of an educational game β€œBolgar XIV”

    Minimizing collisions for quantum hashing

    Get PDF
    Β© Medwell Journals, 2017.Hashing is a widely used technique in computer science. The recently proposed quantum hashing has also proved its usefulness in a number of applications. The key property of both classical and quantum hashing is the ability to withstand collisions however, the notion of collision itself is different in the classical and quantum setting. In this study we analyze the set of numeric parameters that determine the probability of quantum collisions for the quantum hashing. Although, there is a general method of obtaining good hashing parameters, it makes sense for comparatively large inputs. That is why we construct different methods to complement the general one. We present two explicit optimization algorithms for computation of quantum hashing parameters: one is based on the genetic approach and the other uses the annealing simulation. The solution to the considered optimization problem can be used for the variety of quantum hash functions and also provides a solution to the general problem of constructing sets of pairwise distinguishable states in low-dimensional spaces

    Nitrided Ferroalloy Production By Metallurgical SHS Process: Scientific Foundations and Technology

    Get PDF
    The main objective of this paper is to present results of the research in the development of a specialized self-propagating high-temperature synthesis (SHS) technology for ferroalloy composites, as applied to steelmaking. The problem of creating such a production cycle has been solved by developing a new approach to the practical implementation of self-propagating high-temperature synthesis, as applied to metallurgy. The metallurgical variation of SHS is based on the use of different metallurgic alloys (including waste in the form of dust from ferroalloy production) as basic raw materials in the new process. Here, the process of synthesis by combustion is realized through exothermic exchange reactions. The process produces a composite, based on inorganic compositions with a bond of iron and/or alloy based on iron. It has been shown that in terms of the aggregate state of initial reagents, metallurgical SHS processes are either gasless or gas-absorbing. Combustion regimes significantly differ when realized in practice. To organize the metallurgical SHS process in weakly exothermic systems, different variations of the thermal trimming principle are used. In the present study, self-propagating high-temperature synthesis of ferrovanadium nitride, ferrochromium nitride and ferrosilicon nitride; which is widely used in steel alloying, was investigated. Keywords: self-propagating high-temperature synthesis (SHS); composite ferroalloys; nitrides; borides; filtration combustion; ferrovanadium nitride ferrochromium nitride and ferrosilicon nitrid

    Dynamic Geometry Environments as a Tool for Computer Modeling in the System of Modern Mathematics Education

    Get PDF
    Abstract. This paper discusses a number of issues and problems associated with the use of computer models in the study of geometry in university, as well as school mathematics in order to improve its efficiency. We show that one of the efficient ways to solve a number of problems in nowadays mathematics education is to use dynamic geometry environment GeoGebra. We also provide some examples of computer models created with GeoGebra. Keywords: dynamic geometry environment; GeoGebra, computer mathematics; innovations; learning process; interactive computer models; Internet; mathematics education. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. БистСмы динамичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ (Π‘Π”Π“), ΠΈΠ»ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ гСомСтричСскиС систСмы (Π˜Π“Π‘), ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹Π΅ срСды, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ ΠΈ ΠΌΠ°Π½ΠΈΠΏΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ гСомСтричСскими построСниями, ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго Π½Π° плоскости (Π² плоской Π•Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ) Π‘Π”Π“ ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Ρ‹ ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ школьного курса Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ: Π² Π½ΠΈΡ… ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ всСвозмоТныС конструкции ΠΈΠ· Ρ‚ΠΎΡ‡Π΅ΠΊ, Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², прямых; ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ‚Π°ΠΊΠΆΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ динамичСски ΠΈΠ·ΠΌΠ΅Π½ΡΡ‚ΡŒ Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° (ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²), входящСго(ΠΈΡ…) Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅; ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ пСрпСндикулярныС ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ прямой Π»ΠΈΠ½ΠΈΠΈ, сСрСдинныС пСрпСндикуляры, биссСктрисы ΡƒΠ³Π»ΠΎΠ², ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅; ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ Π΄Π»ΠΈΠ½Ρ‹ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΈ Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹Ρ… ΠΊΡ€ΠΈΠ²Ρ‹Ρ… ΠΈ Ρ‚.Π΄. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π‘Π”Π“ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π²Π²Π΅Π΄Π΅Π½Ρ‹ Π²Ρ€ΡƒΡ‡Π½ΡƒΡŽ Π½Π° ΠΏΠ°Π½Π΅Π»ΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², Π° уравнСния ΠΊΡ€ΠΈΠ²Ρ‹Ρ… ΠΈ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊ Π½ΠΈΠΌ Π² строкС Π²Π²ΠΎΠ΄Π° ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠΌΠ°Π½Π΄. Π‘Π”Π“ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ ΠΈ с Π±ΠΎΠ»Π΅Π΅ слоТными для понимания студСнта Ρ€Π°Π·Π΄Π΅Π»Π°ΠΌΠΈ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ: ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ [2] ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ. ΠžΡΠΎΠ±ΡƒΡŽ Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ присущиС Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ Π‘Π”Π“ возмоТности Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌ, Π° Ρ‚Π°ΠΊΠΆΠ΅ поэтапного воспроизвСдСния Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ ΠΈ ΠΈΠ½Ρ‹Ρ… дСмонстраций. ВсС это Π΄Π΅Π»Π°Π΅Ρ‚ Ρ‚Π°ΠΊΠΈΠ΅ систСмы вСсьма ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ для школьного ΠΈ Π΄Π°ΠΆΠ΅ вузовского образования. Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π‘Π”Π“ ΠΏΡ€ΠΈΠ·Π½Π°Π½Ρ‹ Π²ΠΎ всСм ΠΌΠΈΡ€Π΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивным срСдством обучСния ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ-ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ
    • …
    corecore