4 research outputs found

    Exercise training reduces alcohol consumption but does not affect HPA-axis activity in heavy drinkers

    Get PDF
    It has been suggested that physical exercise could have potential beneficial effects in substance abusers, which are based on both physiological and psychological theories. Although a few studies have examined the effect of exercise on alcohol intake and fitness in individuals with alcohol use disorders (AUDs), there is a gap in the literature concerning the physiological and biochemical mechanisms that could be affected by physical exercise in this population

    Inhibition of VCP preserves retinal structure and function in autosomal dominant retinal degeneration

    Get PDF
    Due to continuously high production rates of rhodopsin (RHO) and high metabolic activity, photoreceptor neurons are especially vulnerable to defects in proteostasis. A proline to histidine substitution at position 23 (P23H) leads to production of structurally misfolded RHO, causing the most common form of autosomal dominant Retinitis Pigmentosa (adRP) in North America. The AAA-ATPase valosin-containing protein (VCP) extracts misfolded proteins from the ER membrane for cytosolic degradation. Here, we provide the first evidence that inhibition of VCP activity rescues degenerating P23H rod cells and improves their functional properties in P23H transgenic rat and P23H knock-in mouse retinae, both in vitro and in vivo. This improvement correlates with the restoration of the physiological RHO localization to rod outer segments (OS) and properly-assembled OS disks. As a single intravitreal injection suffices to deliver a long-lasting benefit in vivo, we suggest VCP inhibition as a potential therapeutic strategy for adRP patients carrying mutations in the RHO gene

    The Role of Hsp90 in Retinal Proteostasis and Disease

    Get PDF
    Photoreceptors are sensitive neuronal cells with great metabolic demands, as they are responsible for carrying out visual phototransduction, a complex and multistep process that requires the exquisite coordination of a large number of signalling protein components. Therefore, the viability of photoreceptors relies on mechanisms that ensure a well-balanced and functional proteome that maintains the protein homeostasis, or proteostasis, of the cell. This review explores how the different isoforms of Hsp90, including the cytosolic Hsp90α/β, the mitochondrial TRAP1, and the ER-specific GRP94, are involved in the different proteostatic mechanisms of photoreceptors, and elaborates on Hsp90 function when retinal homeostasis is disturbed. In addition, several studies have shown that chemical manipulation of Hsp90 has significant consequences, both in healthy and degenerating retinae, and this can be partially attributed to the fact that Hsp90 interacts with important photoreceptor-associated client proteins. Here, the interaction of Hsp90 with the retina-specific client proteins PDE6 and GRK1 will be further discussed, providing additional insights for the role of Hsp90 in retinal disease

    A Proximity Complementation Assay to Identify Small Molecules That Enhance the Traffic of ABCA4 Misfolding Variants

    No full text
    ABCA4-related retinopathy is the most common inherited Mendelian eye disorder worldwide, caused by biallelic variants in the ATP-binding cassette transporter ABCA4. To date, over 2200 ABCA4 variants have been identified, including missense, nonsense, indels, splice site and deep intronic defects. Notably, more than 60% are missense variants that can lead to protein misfolding, mistrafficking and degradation. Currently no approved therapies target ABCA4. In this study, we demonstrate that ABCA4 misfolding variants are temperature-sensitive and reduced temperature growth (30 °C) improves their traffic to the plasma membrane, suggesting the folding of these variants could be rescuable. Consequently, an in vitro platform was developed for the rapid and robust detection of ABCA4 traffic to the plasma membrane in transiently transfected cells. The system was used to assess selected candidate small molecules that were reported to improve the folding or traffic of other ABC transporters. Two candidates, 4-PBA and AICAR, were identified and validated for their ability to enhance both wild-type ABCA4 and variant trafficking to the cell surface in cell culture. We envision that this platform could serve as a primary screen for more sophisticated in vitro testing, enabling the discovery of breakthrough agents to rescue ABCA4 protein defects and mitigate ABCA4-related retinopathy.Medicine, Faculty ofNon UBCBiochemistry and Molecular Biology, Department ofReviewedFacultyResearche
    corecore