8 research outputs found

    Optimum design and control of amine scrubbing in response to electricity and CO2 prices

    Get PDF
    AbstractThis paper presents steady state and dynamic modelling of post combustion CO2 capture using 30 wt% MEA integrated with models of CO2 compression and the steam power cycle. It uses multivariable optimization tools to maximize hourly profit of a 100 MWe coal-fired power plant. Steady state optimization for design provided optimum lean loading and CO2 removal as a function of price ratio (CO2 price/electricity price). The results indicated that for price ratio between 2.1 and 7, the plant should be designed at removal between 70% and 98% and lean loading in the range of 0.22–0.25. Dynamic optimization determined the operation of the capture system in response to two partial load scenarios (reboiler steam load reduction and power plant boiler load reduction) and provided optimum set points for steam rate, solvent circulation rate and stripper pressure control loops. Maximum profit is maintained by allowing the stripper pressure to drop and implementing a ratio control between solvent and steam rate (and flue gas rate for partial boiler load operation)

    Dynamic operation of amine scrubbing in response to electricity demand and pricing

    Get PDF
    AbstractThis paper examines dynamic operation of CO2 capture with absorption/stripping using 7 m MEA, where the absorber is operated at full capacity with the stripper at reduced load. Depending on the cost of CO2 emissions, doing so in response to variations in electricity demand could improve annual profits by 10–10–100 million or more at facilities with CO2 capture. Dynamic scenarios were simulated with a controlled, constant ratio of heat rate and solvent rate. With an 80% load reduction, scenarios that turn CO2 capture off and on affect stripper performance only slightly and reach the steady state in about 90 and 18 minutes respectively

    Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success

    Get PDF
    This Phase I SBIR project investigated the economic and technical feasibility of advanced amine scrubbing systems for post-combustion CO2 capture at coal-fired power plants. Numerous combinations of advanced solvent formulations and process configurations were screened for energy requirements, and three cases were selected for detailed analysis: a monoethanolamine (MEA) base case and two “advanced” cases: an MEA/Piperazine (PZ) case, and a methyldiethanolamine (MDEA) / PZ case. The MEA/PZ and MDEA/PZ cases employed an advanced “double matrix” stripper configuration. The basis for calculations was a model plant with a gross capacity of 500 MWe. Results indicated that CO2 capture increased the base cost of electricity from 5 cents/kWh to 10.7 c/kWh for the MEA base case, 10.1 c/kWh for the MEA / PZ double matrix, and 9.7 c/kWh for the MDEA / PZ double matrix. The corresponding cost per metric tonne CO2 avoided was 67.20 /tonneCO2,60.19/tonne CO2, 60.19 /tonne CO2, and 55.05 $/tonne CO2, respectively. Derated capacities, including base plant auxiliary load of 29 MWe, were 339 MWe for the base case, 356 MWe for the MEA/PZ double matrix, and 378 MWe for the MDEA / PZ double matrix. When compared to the base case, systems employing advanced solvent formulations and process configurations were estimated to reduce reboiler steam requirements by 20 to 44%, to reduce derating due to CO2 capture by 13 to 30%, and to reduce the cost of CO2 avoided by 10 to 18%. These results demonstrate the potential for significant improvements in the overall economics of CO2 capture via advanced solvent formulations and process configurations

    Optimum design and control of amine scrubbing in response to electricity and CO2 prices

    Get PDF
    AbstractThis paper presents steady state and dynamic modelling of post combustion CO2 capture using 30 wt% MEA integrated with models of CO2 compression and the steam power cycle. It uses multivariable optimization tools to maximize hourly profit of a 100 MWe coal-fired power plant. Steady state optimization for design provided optimum lean loading and CO2 removal as a function of price ratio (CO2 price/electricity price). The results indicated that for price ratio between 2.1 and 7, the plant should be designed at removal between 70% and 98% and lean loading in the range of 0.22–0.25. Dynamic optimization determined the operation of the capture system in response to two partial load scenarios (reboiler steam load reduction and power plant boiler load reduction) and provided optimum set points for steam rate, solvent circulation rate and stripper pressure control loops. Maximum profit is maintained by allowing the stripper pressure to drop and implementing a ratio control between solvent and steam rate (and flue gas rate for partial boiler load operation)
    corecore