35 research outputs found

    A New Image Analysis Based Method for Measuring Electrospun Nanofiber Diameter

    Get PDF
    In this paper, a new image analysis based method for electrospun nanofiber diameter measurement has been presented. The method was tested by a simulated image with known characteristics and a real web. Mean (M) and standard deviation (STD) of fiber diameter obtained using this method for the simulated image were 15.02 and 4.80 pixels respectively, compared to the true values of 15.35 and 4.47 pixels. For the real web, applying the method resulted in M and STD of 324 and 50.4 nm which are extremely close to the values of 319 and 42 nm obtained using manual method. The results show that this approach is successful in making fast, accurate automated measurements of electrospun fiber diameters

    An Adaptive Temporal-Causal Network Model for Stress Extinction Using Fluoxetine

    No full text
    Part 4: Biomedical AIInternational audienceIn this paper, an adaptive temporal causal network model based on drug therapy named fluoxetine to decrease the stress level of post-traumatic stress disorder is presented. The stress extinction is activated by a cognitive drug therapy (here fluoxetine) that uses continuous usage of medicine. The aim of this therapy is to reduce the connectivity between some components inside the brain which are responsible for causing stress. This computational model aspires to realistically demonstrate the activation of different portions of brain when the therapy is applied. The cognitive model starts with a situation of strong and continuous stress in an individual and after using fluoxetine the stress level begins to decrease over time. As a result, the patient will have a reduced stress level compared to not using drug

    Development and characterization of highly oriented PAN nanofiber

    No full text
    A simple and non-conventional electrospinning technique was employed for producing highly oriented Polyacrylonitrile (PAN) nanofibers. The PAN nanofibers were electrospun from 14 wt% solution of PAN in dimethylformamid (DMF) at 11 kv on a rotating drum with various linear speeds from 22.5 m/min to 67.7 m/min. The influence of take up velocity was investigated on the degree of alignment, internal structure and mechanical properties of collected PAN nanofibers. Using an image processing technique, the best degree of alignment was obtained for those nanofibers collected at a take up velocity of 59.5 m/min. Moreover, Raman spectroscopy was used for measuring molecular orientation of PAN nanofibers. Similarly, a maximum chain orientation parameter of 0.25 was determined for nanofibers collected at a take up velocity of 59.5 m/min
    corecore