1,327 research outputs found

    A Lattice Gas Coupled to Two Thermal Reservoirs: Monte Carlo and Field Theoretic Studies

    Full text link
    We investigate the collective behavior of an Ising lattice gas, driven to non-equilibrium steady states by being coupled to {\em two} thermal baths. Monte Carlo methods are applied to a two-dimensional system in which one of the baths is fixed at infinite temperature. Both generic long range correlations in the disordered state and critical poperties near the second order transition are measured. Anisotropic scaling, a key feature near criticality, is used to extract TcT_{c} and some critical exponents. On the theoretical front, a continuum theory, in the spirit of Landau-Ginzburg, is presented. Being a renormalizable theory, its predictions can be computed by standard methods of ϵ\epsilon -expansions and found to be consistent with simulation data. In particular, the critical behavior of this system belongs to a universality class which is quite {\em different} from the uniformly driven Ising model.Comment: 21 pages, 15 figure

    Getting More from Pushing Less: Negative Specific Heat and Conductivity in Non-equilibrium Steady States

    Full text link
    For students familiar with equilibrium statistical mechanics, the notion of a positive specific heat, being intimately related to the idea of stability, is both intuitively reasonable and mathematically provable. However, for system in non-equilibrium stationary states, coupled to more than one energy reservoir (e.g., thermal bath), negative specific heat is entirely possible. In this paper, we present a ``minimal'' system displaying this phenomenon. Being in contact with two thermal baths at different temperatures, the (internal) energy of this system may increase when a thermostat is turned down. In another context, a similar phenomenon is negative conductivity, where a current may increase by decreasing the drive (e.g., an external electric field). The counter-intuitive behavior in both processes may be described as `` getting more from pushing less.'' The crucial ingredients for this phenomenon and the elements needed for a ``minimal'' system are also presented.Comment: 14 pages, 3 figures, accepted for publication in American Journal of Physic

    Contrasts between Equilibrium and Non-equilibrium Steady States: Computer Aided Discoveries in Simple Lattice Gases

    Full text link
    A century ago, the foundations of equilibrium statistical mechanics were laid. For a system in equilibrium with a thermal bath, much is understood through the Boltzmann factor, exp{-H[C]/kT}, for the probability of finding the system in any microscopic configuration C. In contrast, apart from some special cases, little is known about the corresponding probabilities, if the same system is in contact with more than one reservoir of energy, so that, even in stationary states, there is a constant energy flux through our system. These non-equilibrium steady states display many surprising properties. In particular, even the simplest generalization of the Ising model offers a wealth of unexpected phenomena. Mostly discovered through Monte Carlo simulations, some of the novel properties are understood while many remain unexplained. A brief review and some recent results will be presented, highlighting the sharp contrasts between the equilibrium Ising system and this non-equilibrium counterpart.Comment: 9 pages, 3 figure

    Roughening transition, surface tension and equilibrium droplet shapes in a two-dimensional Ising system

    Get PDF
    The exact surface tension for all angles and temperatures is given for the two-dimensional square Ising system with anisotropic nearest-neighbour interactions. Using this in the Wulff construction, droplet shapes are computed and illustrated. Letting temperature approach zero allows explicit study of the roughening transition in this model. Results are compared with those of the solid-on-solid approximation

    Factorised Steady States in Mass Transport Models on an Arbitrary Graph

    Full text link
    We study a general mass transport model on an arbitrary graph consisting of LL nodes each carrying a continuous mass. The graph also has a set of directed links between pairs of nodes through which a stochastic portion of mass, chosen from a site-dependent distribution, is transported between the nodes at each time step. The dynamics conserves the total mass and the system eventually reaches a steady state. This general model includes as special cases various previously studied models such as the Zero-range process and the Asymmetric random average process. We derive a general condition on the stochastic mass transport rules, valid for arbitrary graph and for both parallel and random sequential dynamics, that is sufficient to guarantee that the steady state is factorisable. We demonstrate how this condition can be achieved in several examples. We show that our generalized result contains as a special case the recent results derived by Greenblatt and Lebowitz for dd-dimensional hypercubic lattices with random sequential dynamics.Comment: 17 pages 1 figur

    Solving dielectric and plasmonic waveguide dispersion relations with a pocket calculator

    Full text link
    We present a robust iterative technique for solving complex transcendental dispersion equations routinely encountered in integrated optics. Our method especially befits the multilayer dielectric and plasmonic waveguides forming the basis structures for a host of contemporary nanophotonic devices. The solution algorithm ports seamlessly from the real to the complex domain--i.e., no extra complexity results when dealing with leaky structures or those with material/metal loss. Unlike several existing numerical approaches, our algorithm exhibits markedly-reduced sensitivity to the initial guess and allows for straightforward implementation on a pocket calculator.Comment: 18 pages, 11 Figures, 5 Tables, added references, Submitted to Optics Expres

    Driven Diffusive Systems: How Steady States Depend on Dynamics

    Full text link
    In contrast to equilibrium systems, non-equilibrium steady states depend explicitly on the underlying dynamics. Using Monte Carlo simulations with Metropolis, Glauber and heat bath rates, we illustrate this expectation for an Ising lattice gas, driven far from equilibrium by an `electric' field. While heat bath and Glauber rates generate essentially identical data for structure factors and two-point correlations, Metropolis rates give noticeably weaker correlations, as if the `effective' temperature were higher in the latter case. We also measure energy histograms and define a simple ratio which is exactly known and closely related to the Boltzmann factor for the equilibrium case. For the driven system, the ratio probes a thermodynamic derivative which is found to be dependent on dynamics

    Power Spectra of the Total Occupancy in the Totally Asymmetric Simple Exclusion Process

    Full text link
    As a solvable and broadly applicable model system, the totally asymmetric exclusion process enjoys iconic status in the theory of non-equilibrium phase transitions. Here, we focus on the time dependence of the total number of particles on a 1-dimensional open lattice, and its power spectrum. Using both Monte Carlo simulations and analytic methods, we explore its behavior in different characteristic regimes. In the maximal current phase and on the coexistence line (between high/low density phases), the power spectrum displays algebraic decay, with exponents -1.62 and -2.00, respectively. Deep within the high/low density phases, we find pronounced \emph{oscillations}, which damp into power laws. This behavior can be understood in terms of driven biased diffusion with conserved noise in the bulk.Comment: 4 pages, 4 figure

    The Effects of Next-Nearest-Neighbor Interactions on the Orientation Dependence of Step Stiffness: Reconciling Theory with Experiment for Cu(001)

    Get PDF
    Within the solid-on-solid (SOS) approximation, we carry out a calculation of the orientational dependence of the step stiffness on a square lattice with nearest and next-nearest neighbor interactions. At low temperature our result reduces to a simple, transparent expression. The effect of the strongest trio (three-site, non pairwise) interaction can easily be incorporated by modifying the interpretation of the two pairwise energies. The work is motivated by a calculation based on nearest neighbors that underestimates the stiffness by a factor of 4 in directions away from close-packed directions, and a subsequent estimate of the stiffness in the two high-symmetry directions alone that suggested that inclusion of next-nearest-neighbor attractions could fully explain the discrepancy. As in these earlier papers, the discussion focuses on Cu(001).Comment: 8 pages, 3 figures, submitted to Phys. Rev.
    • …
    corecore