3,003 research outputs found

    Jet-cloud/star interaction as an interpretation of neutrino outburst from the blazar TXS 0506+056

    Full text link
    Recently, a high-energy neutrino event IceCube-170922A in the spatial and temporal coincidence with the flaring gamma-ray blazar TXS 0506+056 was reported. A neutrino outburst between September 2014 and March 2015 was discovered in the same direction by a further investigation of 9.59.5 years of IceCube data, while the blazar is in a quiescent state during the outburst with a gamma-ray flux only about one-fifth of the neutrino flux. In this letter, we propose the neutrino outburst originates from the interaction between a relativistic jet and a dense gas cloud which may be formed via the tidally disrupted envelope of a red giant being blown by the impact of the jet. Gamma-ray photons and electron/positron pairs that are produced correspondingly will induce electromagnetic cascades. Comptonization of the cascade emission inside the cloud forms an X-ray photon field with Wien distribution. GeV flux is suppressed due to the absorption by the Comptonized photon field and, as a result, a hard spectrum above 10 GeV is formed. The gamma-ray spectrum predicted in our model is consistent with the Fermi-LAT data of TXS 0506+056.Comment: 6 pages, 3 figure

    Possible singlet and triplet superconductivity on honeycomb lattice

    Full text link
    We study the possible superconducting pairing symmetry mediated by spin and charge fluctuations on the honeycomb lattice using the extended Hubbard model and the random-phase-approximation method. From 2%2\% to 20%20\% doping levels, a spin-singlet dx2−y2+idxyd_{x^{2}-y^{2}}+id_{xy}-wave is shown to be the leading superconducting pairing symmetry when only the on-site Coulomb interaction UU is considered, with the gap function being a mixture of the nearest-neighbor and next-nearest-neighbor pairings. When the offset of the energy level between the two sublattices exceeds a critical value, the most favorable pairing is a spin-triplet ff-wave which is mainly composed of the next-nearest-neighbor pairing. We show that the next-nearest-neighbor Coulomb interaction VV is also in favor of the spin-triplet ff-wave pairing.Comment: 6 pages, 4 figure

    Scale invariant distribution functions in quantum systems with few degrees of freedom

    Full text link
    Scale invariance usually occurs in extended systems where correlation functions decay algebraically in space and/or time. Here we introduce a new type of scale invariance, occurring in the distribution functions of physical observables. At equilibrium these functions decay over a typical scale set by the temperature, but they can become scale invariant in a sudden quantum quench. We exemplify this effect through the analysis of linear and non-linear quantum oscillators. We find that their distribution functions generically diverge logarithmically close to the stable points of the classical dynamics. Our study opens the possibility to address integrability and its breaking in distribution functions, with immediate applications to matter-wave interferometers.Comment: 8+10 pages. Scipost Submissio
    • …
    corecore