27 research outputs found

    Simulating short-term light responses of photosynthesis and water use efficiency in sweet sorghum under varying temperature and CO2 conditions

    Get PDF
    Climate change, characterized by rising atmospheric CO2 levels and temperatures, poses significant challenges to global crop production. Sweet sorghum, a prominent C4 cereal extensively grown in arid areas, emerges as a promising candidate for sustainable bioenergy production. This study investigated the responses of photosynthesis and leaf-scale water use efficiency (WUE) to varying light intensity (I) in sweet sorghum under different temperature and CO2 conditions. Comparative analyses were conducted between the An-I, gs-I, Tr-I, WUEi-I, and WUEinst-I models proposed by Ye et al. and the widely utilized the non-rectangular hyperbolic (NRH) model for fitting light response curves. The Ye's models effectively replicated the light response curves of sweet sorghum, accurately capturing the diminishing intrinsic WUE (WUEi) and instantaneous WUE (WUEinst) trends with increasing I. The fitted maximum values of An, gs, Tr, WUEi, and WUEinst and their saturation light intensities closely matched observations, unlike the NRH model. Despite the NRH model demonstrating high R2 values for An-I, gs-I, and Tr-I modelling, it returned the maximum values significantly deviating from observed values and failed to generate saturation light intensities. It also inadequately represented WUE responses to I, overestimating WUE. Across different leaf temperatures, An, gs, and Tr of sweet sorghum displayed comparable light response patterns. Elevated temperatures increased maximum An, gs, and Tr but consistently declined maximum WUEi and WUEinst. However, WUEinst declined more sharply due to the disproportionate transpiration increase over carbon assimilation. Critically, sweet sorghum An saturated at current atmospheric CO2 levels, with no significant gains under 550 μmol mol−1. Instead, stomatal closure enhanced WUE under elevated CO2 by coordinated gs and Tr reductions rather than improved carbon assimilation. Nonetheless, this response diminished under simultaneously high temperature, suggesting intricate interplay between CO2 and temperature in modulating plant responses. These findings provide valuable insights into photosynthetic dynamics of sweet sorghum, aiding predictions of yield and optimization of cultivation practices. Moreover, our methodology serves as a valuable reference for evaluating leaf photosynthesis and WUE dynamics in diverse plant species

    Scintillation Arc from FRB 20220912A

    Full text link
    We present the interstellar scintillation analysis of fast radio burst (FRB) 20220912A during its extremely active episode in 2022 using data from the Five-hundred-meter Aperture Spherical Radio Telescope (FAST). We detect a scintillation arc in the FRB's secondary spectrum, which describes the power in terms of the scattered FRB signals' time delay and Doppler shift. The arc indicates that the scintillation is caused by a highly localized region of the ionized interstellar medium (IISM). Our analysis favors a Milky Way origin for the localized scattering medium but cannot rule out a host galaxy origin. We present our method for detecting the scintillation arc, which can be applied generally to sources with irregularly spaced bursts or pulses. These methods could help shed light on the complex interstellar environment surrounding the FRBs and in our Galaxy.Comment: SCIENCE CHINA Physics, Mechanics & Astronomy , Volume 67, Issue 1: 219512 (2024

    A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III

    Full text link
    We established a method on measuring the \dzdzb mixing parameter yy for BESIII experiment at the BEPCII e+e−e^+e^- collider. In this method, the doubly tagged ψ(3770)→D0D0‾\psi(3770) \to D^0 \overline{D^0} events, with one DD decays to CP-eigenstates and the other DD decays semileptonically, are used to reconstruct the signals. Since this analysis requires good e/πe/\pi separation, a likelihood approach, which combines the dE/dxdE/dx, time of flight and the electromagnetic shower detectors information, is used for particle identification. We estimate the sensitivity of the measurement of yy to be 0.007 based on a 20fb−120fb^{-1} fully simulated MC sample.Comment: 6 pages, 7 figure

    Nitrogen Level Changes the Interactions between a Native (Scirpus triqueter) and an Exotic Species (Spartina anglica) in Coastal China

    Get PDF
    The exotic species Spartina anglica, introduced from Europe in 1963, has been experiencing a decline in the past decade in coastal China, but the reasons for the decline are still not clear. It is hypothesized that competition with the native species Scirpus triqueter may have played an important role in the decline due to niche overlap in the field. We measured biomass, leaf number and area, asexual reproduction and relative neighborhood effect (RNE) of the two species in both monoculture and mixture under three nitrogen levels (control, low and high). S. anglica showed significantly lower biomass accumulation, leaf number and asexual reproduction in mixture than in monoculture. The inter- and intra-specific RNE of S. anglica were all positive, and the inter-specific RNE was significantly higher than the intra-specific RNE in the control. For S. triqueter, inter- and intra-specific RNE were negative at the high nitrogen level but positive in the control and at the low nitrogen level. This indicates that S. triqueter exerted an asymmetric competitive advantage over S. anglica in the control and low nitrogen conditions; however, S. anglica facilitated growth of S. triqueter in high nitrogen conditions. Nitrogen level changed the interactions between the two species because S. triqueter better tolerated low nitrogen. Since S. anglica is increasingly confined to upper, more nitrogen-limited marsh areas in coastal China, increased competition from S. triqueter may help explain its decline

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Preparation and study of the structural and electronic properties of the type-I clathrate phase Ba

    No full text
    Polycrystalline Ba8Ga16MgxGe30−x compounds were synthesized by combining solid-state reaction with spark plasma sintering (SPS) method. The structural and electronic properties of Mg-substituted Ge type-I clathrate phase Ba8Ga16MgxGe30−x (x = 1, 2, 3, 4) were investigated experimentally and theoretically. Theoretically structural and electronic properties of Ba8Ga16MgxGe30−x were calculated by first-principles method based on the density-functional theory. The results indicate a strong preference for the occupation of the 6c sites by Mg. It is found that Mg substitution for Ge can lower the melting points and bulk modulus of this system. The formation energies and the binding energies decrease with increasing Mg content, suggesting that the Mg-doped Ba8Ga16Ge30 clathrates are stable in a limited range of composition. The calculated results show that these alloys are all indirect gap semiconductors and the values of band gap increase with the increase of Mg content. All specimens exhibit the behavior of the p-type conduction, which is originated from the presence of a shallow acceptor energy level. The electrical conductivity and the room-temperature carrier mobility decrease with increasing Mg content, while the room-temperature carrier concentration increases with increasing Mg content
    corecore