102 research outputs found

    Theory of d+idd + id Second-Order Topological Superconductors

    Full text link
    Topological superconductors are a class of unconventional superconducting materials featuring sub-gap zero-energy Majorana bound modes that hold promise as a building block for topological quantum computing. In this work, we study the realization of second-order topology that defines anomalous gapless boundary modes in a two-orbital superconductor with spin-orbital couplings. We reveal a time-reversal symmetry-breaking second-order topological superconducting phase with d+idd+id-wave orbital-dependent paring without the need for the external magnetic field. Remarkably, this orbital-active dd-wave paring gives rise to anomalous zero-energy Majorana corner modes, which is in contrast to conventional chiral dd-wave pairing, accommodating one-dimensional Majorana edge modes. Our work not only reveals a unique mechanism of time-reversal symmetry breaking second-order topological superconductors but also bridges the gap between second-order topology and orbital-dependent pairings.Comment: 5+ pages, 5 figure

    Visualizing the elongated vortices in γ\gamma-Ga nanostrips

    Get PDF
    We study the magnetic response of superconducting γ\gamma-Ga via low temperature scanning tunneling microscopy and spectroscopy. The magnetic vortex cores rely substantially on the Ga geometry, and exhibit an unexpectedly-large axial elongation with aspect ratio up to 40 in rectangular Ga nano-strips (width ll << 100 nm). This is in stark contrast with the isotropic circular vortex core in a larger round-shaped Ga island. We suggest that the unusual elongated vortices in Ga nanostrips originate from geometric confinement effect probably via the strong repulsive interaction between the vortices and Meissner screening currents at the sample edge. Our finding provides novel conceptual insights into the geometrical confinement effect on magnetic vortices and forms the basis for the technological applications of superconductors.Comment: published in Phys. Rev. B as a Rapid Communicatio

    Disorder induced multifractal superconductivity in monolayer niobium dichalcogenides

    Full text link
    The interplay between disorder and superconductivity is a subtle and fascinating phenomenon in quantum many body physics. The conventional superconductors are insensitive to dilute nonmagnetic impurities, known as the Anderson's theorem. Destruction of superconductivity and even superconductor-insulator transitions occur in the regime of strong disorder. Hence disorder-enhanced superconductivity is rare and has only been observed in some alloys or granular states. Because of the entanglement of various effects, the mechanism of enhancement is still under debate. Here we report well-controlled disorder effect in the recently discovered monolayer NbSe2_2 superconductor. The superconducting transition temperatures of NbSe2_2 monolayers are substantially increased by disorder. Realistic theoretical modeling shows that the unusual enhancement possibly arises from the multifractality of electron wave functions. This work provides the first experimental evidence of the multifractal superconducting state

    A multiphase-field model for simulating the hydrogen-induced multi-spot corrosion on the surface of polycrystalline metals: Application to uranium metal

    Full text link
    Hydrogen-induced multi-spot corrosion on the surface of polycrystalline rare metals is a complex process, which involves the interactions between phases (metal, hydride and oxide), grain orientations, grain boundaries, and corrosion spots. To accurately simulate this process and comprehend the underlying physics, a theoretical method is required that includes the following mechanisms: i) hydrogen diffusion, ii) phase transformation, iii) elastic interactions between phases, especially, the interactions between the oxide film and the hydride, iv) elastic interactions between grains, and v) interactions between hydrogen solutes and grain boundaries. In this study, we report a multiphase-field model that incorporates all these requirements, and conduct a comprehensive study of hydrogen-induced spot corrosion on the uranium metal surface, including the investigation of the oxide film, multi-spot corrosion, grain orientation, and grain boundary in the monocrystal, bicrystal, and polycrystal systems. The results indicate that the oxide film can inhibit the growth of hydrides and plays a crucial role in determining the correct morphology of the hydride at the triple junction of phases. The elastic interaction between multiple corrosion spots causes the merging of corrosion spots and promotes the growth of hydrides. The introduction of grain orientations and grain boundaries results in a variety of intriguing intracrystalline and intergranular hydride morphologies. The model presented here is generally applicable to the hydrogen-induced multi-spot corrosion on any rare metal surface.Comment: 22 pages (text), 16 figures (text), 2 table (text), 8 pages (SI), 12 figures (SI

    Metabolomic Analysis Uncovers Energy Supply Disturbance as an Underlying Mechanism of the Development of Alcohol‐Associated Liver Cirrhosis

    Get PDF
    Alcohol-associated liver disease (ALD) is caused by alcohol metabolism's effects on the liver. The underlying mechanisms from a metabolic view in the development of alcohol-associated liver cirrhosis (ALC) are still elusive. We performed an untargeted serum metabolomic analysis in 14 controls, 16 patients with ALD without cirrhosis (NC), 27 patients with compensated cirrhosis, and 79 patients with decompensated ALC. We identified two metabolic fingerprints associated with ALC development (38 metabolites) and those associated with hepatic decompensation (64 metabolites) in ALC. The cirrhosis-associated fingerprint (eigenmetabolite) showed a better capability to differentiate ALC from NC than the aspartate aminotransferase-to-platelet ratio index score. The eigenmetabolite associated with hepatic decompensation showed an increasing trend during the disease progression and was positively correlated with the Model for End-Stage Liver Disease score. These metabolic fingerprints belong to the metabolites in lipid metabolism, amino acid pathway, and intermediary metabolites in the tricarboxylic acid cycle. Conclusion: The metabolomic fingerprints suggest the disturbance of the metabolites associated with cellular energy supply as an underlying mechanism in the development and progression of alcoholic cirrhosis

    Acute effect of breathing exercises on muscle tension and executive function under psychological stress

    Get PDF
    IntroductionIntensive and long-lasting office work is a common cause of muscular and mental disorders due to workplace stressors. Mindful and slow breathing exercises decrease psychological stress and improve mental health, whereas fast breathing increases neuronal excitability. This study aimed to explore the influence of 5 min of mindful breathing (MINDFUL), slow breathing (SLOW), fast breathing (FAST), and listening to music (MUSIC) on muscle tension and executive function during an intensive psychological task.MethodsForty-eight participants (24 men and 24 women) were enrolled. Muscle tension was recorded using surface electromyography, and executive function was assessed using the Stroop Color and Word Test (Stroop Test). The respiration rate (RR), oxygen saturation (SpO2), end-tidal carbon dioxide (EtCO2), and the subjects' preferred method were also recorded. During the experiment, participants performed a one-time baseline test (watching a neutral video for 5 min) and then completed 5 min of MUSIC, MINDFUL, SLOW, and FAST in a random sequence. The Stroop Test was performed after each intervention, including the baseline test, and was followed by a 5 min rest before performing the next intervention.ResultsNone of the methods significantly influenced muscular activity and performance of the Stroop Test in both men and women, based on the average 5 min values. However, at the fifth minute, men's accuracy rate in the Stroop Test was significantly higher after SLOW than after MUSIC and FAST, and the reaction time after the SLOW was the shortest. SpO2 was significantly higher during SLOW than during MUSIC, and RR was relatively lower after SLOW than after MUSIC. Most men preferred SLOW, and most women preferred MUSIC, whereas FAST was the most unfavorable method for both men and women.ConclusionBrief breathing exercises did not substantially affect muscle tension under psychological stress. SLOW demonstrated greater potential for sustaining executive function in men, possibly via its superior respiration efficiency on SpO2 and inhibition of RR

    Out-of-season spawning of largemouth bass in a controllable recirculating system

    Get PDF
    Largemouth bass (LMB) production exceeded 0.7 million tons in 2021 and has become one of the most important freshwater aquaculture species in China. The stable and fixed culture cycle led to regular and drastic price fluctuation during the past decade. Strong price fluctuation provides opportunities and challenges for the LMB industry, and out-of-season spawning (OSS) and culture will provide technical support for the opportunities. To induce OSS at a low cost, we established a controllable recirculating system that allows precise thermo-photoperiod manipulation. In the system, four experimental groups were assigned, 18NP (18°C overwintering water temperature, natural photoperiod), 18CP (18°C overwintering water temperature, controlled photoperiod), 16CP (16°C overwintering water temperature, controlled photoperiod), and NTNP (natural water temperature and natural photoperiod), to determine the effects of chilling temperature and photoperiod on spawning performance. OSS was observed in all the experimental groups without significant differences, except NTNP. The manipulated broodstock can re-spawn 3 months later in the next spring in advance. Further analysis of the volume percentage of different stages of oocytes provides a base for excellent regression between the volume percentage of the primary growth stage, cortical alveoli stage, vitellogenesis/maturation stage, and gonadal development/maturation. The results suggest that the volume percentage of oocytes is a better indicator of gonadal development and maturation than the gonadosomatic index. We also found that LMB prefers palm fiber as a spawning nest over gravel. The findings of this work provide important technique guidance for practical OSS of the LMB aquaculture industry and standardization of ovary development and maturation in fish with asynchronous developmental oocytes

    Synchrotron Radiation Dominates the Extremely Bright GRB 221009A

    Full text link
    The brightest Gamma-ray burst, GRB 221009A, has spurred numerous theoretical investigations, with particular attention paid to the origins of ultra-high energy TeV photons during the prompt phase. However, analyzing the mechanism of radiation of photons in the \simMeV range has been difficult because the high flux causes pile-up and saturation effects in most GRB detectors. In this letter, we present systematic modeling of the time-resolved spectra of the GRB using unsaturated data obtained from Fermi/GBM (precursor) and SATech-01/GECAM-C (main emission and flare). Our approach incorporates the synchrotron radiation model, which assumes an expanding emission region with relativistic speed and a global magnetic field that decays with radius, and successfully fits such a model to the observational data. Our results indicate that the spectra of the burst are fully in accordance with a synchrotron origin from relativistic electrons accelerated at a large emission radius. The lack of thermal emission in the prompt emission spectra supports a Poynting-flux-dominated jet composition.Comment: 12 pages, 6 figures, 2 tables. Accepted for publication in ApJ

    Charge-changing cross section measurements of 300 MeV/nucleon 28^{28}Si on carbon and data analysis

    Full text link
    Charge-changing cross section (σcc\sigma_{\text{cc}}) measurements via the transmission method have made important progress recently aiming to determine the charge radii of exotic nuclei. In this work, we report a new σcc\sigma_{\text{cc}} measurement of 304(9) MeV/nucleon 28^{28}Si on carbon at the second Radioactive Ion Beam Line in Lanzhou (RIBLL2) and describe the data analysis procedure in detail. This procedure is essential to evaluate the systematic uncertainty in the transmission method. The determined σcc\sigma_{\mathrm{cc}} of 1125(11) mb is found to be consistent with the existing data at similar energies. The present work will serve as a reference in the σcc\sigma_{\text{cc}} determinations at RIBLL2.Comment: 9 pages, 13 figures, to be published in Chinese Physics

    Corrigendum to: The TianQin project: current progress on science and technology

    Get PDF
    In the originally published version, this manuscript included an error related to indicating the corresponding author within the author list. This has now been corrected online to reflect the fact that author Jun Luo is the corresponding author of the article
    corecore