24 research outputs found

    Spatial and frequency dependencies of local photoresponse of HTS strip-line resonator in regime of two-tone microwave intermodulation excitation

    Full text link
    A new phenomenological approach to spatially-resolved research of nonlinear (NL) microwave properties of operating thin-film superconducting resonators is proposed. The approach is based on frequency and spatial singularity of Laser Scanning Microscopy (LSM) images that can be extracted from a set of 2-D patterns representing x-y distribution of the LSM photoresponse, PR(x, y), at fixed third-order intermodulation (IMD) frequencies 2f1-f2 and 2f2-f1 as a result of two-tone resonator microwave excitation at equidistant frequencies f1 and f2 relative to the fundamental resonance, f0. It was shown by us earlier that the total LSM PR(x, y) originates from two independent (resistive, PRR(x, y), and inductive, PRX(x, y)) contributions which can be extracted directly from the LSM images acquired at f1 and f2 by using a method of spatially-resolved complex impedance partition [1]. Here, we show that practically the same manipulation of LSM images at 2f1-f2 and 2f2-f1 can be used to present NL components of IMD LSM PR(x, y) in terms of its independent spatial variations of (i) inductive IMD_IND(x, y) and (ii) resistive IMD_RES(x, y) contributions reflecting the origin of the local sources of microwave NL. [1] A.P. Zhuravel, S.M. Anlage, and A.V. Ustinov, Appl. Phys. Lett., vol. 88, p. 212503, 2006.Comment: 3 pages, 4 figures, submitted to the Seventh International Kharkov Symposium (MSMW'10) Proceeding

    Imaging of Microscopic Sources of Resistive and Reactive Nonlinearities in Superconducting Microwave Devices

    Full text link
    The technique of low-temperature Laser Scanning Microscopy (LSM) has been applied to the investigation of local microwave properties in operating YBa2Cu3O7/LaAlO3 thin-film resonators patterned into a meandering strip transmission line. By using a modified newly developed procedure of spatially-resolved complex impedance partition, the influence of inhomogeneous current flow on the formation of nonlinear (NL) microwave response in such planar devices is analyzed in terms of the independent impact from resistive and inductive components. The modified procedure developed here is dramatically faster than our previous method. The LSM capability to probe the spatial variations of two-tone, third-order intermodulation currents on micron length scales is used to find the 2D distribution of the local sources of microwave NL. The results show that the dominant sources of microwave NL are strongly localized in the resistive domains.Comment: 4 pages, 6 figures, 2-column format,submitted for the 2006 Applied Superconductivity Conferenc

    Spatial correlation of linear and nonlinear electron transport in superconducting microwave resonator: laser scanning microscopy analysis

    Full text link
    Spatially-resolved techniques of laser scanning microscopy (LSM) have been used to image simultaneously the spatial variations of (i) rf current flow, JRF_RF(x,y), of (ii) areas of resistive dissipation and (iii) the sources of microwave nonlinearity (NL) in an operating superconducting resonator. The RF power dependent spatial evolution of these linear and NL microwave properties in the meander strip YBCO/LAO superconducting resonator have been LSM probed at different temperatures below Tc. The influence of both topologies of the twin-domain YBCO structure and of JRF_RF(x,y) peaks at the edges of superconducting strip line on its NL properties was analyzed in detail with a micron-scale spatial resolution. Result shows the resistive origin of the dominant sources of microwave NLsComment: 3 pages, 3 figures, submitted to MSMW-07 Symposium Proceeding

    Unconventional rf photoresponse from a superconducting spiral resonator

    Get PDF
    Superconducting thin film resonators employing strip geometries show great promise in rf/microwave applications due to their low loss and compact nature. However, their functionality is limited by nonlinear effects at elevated rf/microwave powers. Here, we show that by using a planar spiral geometry carrying parallel currents in adjacent turns, this limitation can be minimized. We investigate the rf current distributions in spiral resonators implemented with Nb thin films via laser scanning microscopy. The rf current density profile along the width of the individual turns of the resonators reveals an unconventional trend: maximum current in the middle of the structure and decaying toward its edges. This unusual behavior is associated with the circular nature of the geometry and the cancellation of magnetic field between the turns, which is favorable for handling high powers since it allows the linear characteristics to persist at high rf current densities.Comment: 8 pages, 7 figure

    Tunability of Superconducting Metamaterials

    Full text link
    Metamaterials are artificial structures with unique electromagnetic properties, such as relative dielectric permittivity and magnetic permeability with values less than 1, or even negative. Because these properties are so sensitive to loss, we have developed metamaterials comprised of superconducting waveguides, wires, and split-ring resonators. An important requirement for applications of these metamaterials is the ability to tune the frequency at which the unique electromagnetic response occurs. In this paper we present three methods (unique to superconductors) to accomplish this tuning: temperature, dc magnetic field, and rf magnetic field. Data are shown for dc and rf magnetic field tuning of a single Nb split-ring resonator (SRR). It was found that the dc field tuning was hysteritic in the resonant frequency data, while the quality factor, QQ, was less hystertic. The rf power tuning showed no hysteresis, but did show supression of the QQ at high power. Magneto-optical images reveal inhomogeneous magnetic vortex entry in the dc field tuning, and laser scanning photoresponse images for a YBa2_2Cu3_3O7−δ_{7-\delta} SRR reveals the current distribution in the rings.Comment: RexTEX, 4 pages of text with 6 figures plus 1/5 page of references, submitted for the 2006 Applied Superconductivity Conference; Revised edition: spelling corrections, and we removed mention of measuring the Current Density and replaced this with a more explicit definition of what we measure (with reference

    Measurement of Local Reactive and Resistive Photoresponse of a Superconducting Microwave Device

    Full text link
    We propose and demonstrate a spatial partition method for the high-frequency photo-response of superconducting devices correlated with inductive and resistive changes in microwave impedance. Using a laser scanning microscope, we show that resistive losses are mainly produced by local defects at microstrip edges and by intergrain weak links in the high-temperature superconducting material. These defects initiate nonlinear high-frequency response due to overcritical current densities and entry of vortices.Comment: 4 pages, 4 figures, submitted to Applied Physics Letter

    Microscopic examination of hot spots giving rise to nonlinearity in superconducting resonators

    Get PDF
    We investigate the microscopic origins of nonlinear rf response in superconducting electromagnetic resonators. Strong nonlinearity appearing in the transmission spectra at high input powers manifests itself through the emergence of jumplike features near the resonant frequency that evolve toward lower quality factor with higher insertion loss as the rf input power is increased. We directly relate these characteristics to the dynamics of localized normal regions (hot spots) caused by microscopic features in the superconducting material making up the resonator. A clear observation of hot-spot formation inside a Nb thin film self-resonant structure is presented by employing the microwave laser scanning microscope, and a direct link between microscopic and macroscopic manifestations of nonlinearity is established.Comment: 5 pages, 4 figure
    corecore