11 research outputs found

    Intestinal microbiota: a new perspective on delaying aging?

    Get PDF
    The global aging situation is severe, and the medical pressures associated with aging issues should not be underestimated. The need and feasibility of studying aging and intervening in aging have been confirmed. Aging is a complex natural physiological progression, which involves the irreversible deterioration of body cells, tissues, and organs with age, leading to enhanced risk of disease and ultimately death. The intestinal microbiota has a significant role in sustaining host dynamic balance, and the study of bidirectional communication networks such as the brain–gut axis provides important directions for human disease research. Moreover, the intestinal microbiota is intimately linked to aging. This review describes the intestinal microbiota changes in human aging and analyzes the causal controversy between gut microbiota changes and aging, which are believed to be mutually causal, mutually reinforcing, and inextricably linked. Finally, from an anti-aging perspective, this study summarizes how to achieve delayed aging by targeting the intestinal microbiota. Accordingly, the study aims to provide guidance for further research on the intestinal microbiota and aging

    Epigenetic regulation of dental-derived stem cells and their application in pulp and periodontal regeneration

    No full text
    Dental-derived stem cells have excellent proliferation ability and multi-directional differentiation potential, making them an important research target in tissue engineering. An increasing number of dental-derived stem cells have been discovered recently, including dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHEDs), stem cells from apical papilla (SCAPs), dental follicle precursor cells (DFPCs), and periodontal ligament stem cells (PDLSCs). These stem cells have significant application prospects in tissue regeneration because they are found in an abundance of sources, and they have good biocompatibility and are highly effective. The biological functions of dental-derived stem cells are regulated in many ways. Epigenetic regulation means changing the expression level and function of a gene without changing its sequence. Epigenetic regulation is involved in many biological processes, such as embryonic development, bone homeostasis, and the fate of stem cells. Existing studies have shown that dental-derived stem cells are also regulated by epigenetic modifications. Pulp and periodontal regeneration refers to the practice of replacing damaged pulp and periodontal tissue and restoring the tissue structure and function under normal physiological conditions. This treatment has better therapeutic effects than traditional treatments. This article reviews the recent research on the mechanism of epigenetic regulation of dental-derived stem cells, and the core issues surrounding the practical application and future use of pulp and periodontal regeneration

    YOLO-Weld: A Modified YOLOv5-Based Weld Feature Detection Network for Extreme Weld Noise

    No full text
    Weld feature point detection is a key technology for welding trajectory planning and tracking. Existing two-stage detection methods and conventional convolutional neural network (CNN)-based approaches encounter performance bottlenecks under extreme welding noise conditions. To better obtain accurate weld feature point locations in high-noise environments, we propose a feature point detection network, YOLO-Weld, based on an improved You Only Look Once version 5 (YOLOv5). By introducing the reparameterized convolutional neural network (RepVGG) module, the network structure is optimized, enhancing detection speed. The utilization of a normalization-based attention module (NAM) in the network enhances the network’s perception of feature points. A lightweight decoupled head, RD-Head, is designed to improve classification and regression accuracy. Furthermore, a welding noise generation method is proposed, increasing the model’s robustness in extreme noise environments. Finally, the model is tested on a custom dataset of five weld types, demonstrating better performance than two-stage detection methods and conventional CNN approaches. The proposed model can accurately detect feature points in high-noise environments while meeting real-time welding requirements. In terms of the model’s performance, the average error of detecting feature points in images is 2.100 pixels, while the average error in the world coordinate system is 0.114 mm, sufficiently meeting the accuracy needs of various practical welding tasks

    Theoretical Model for the Stress–Strain Curve of CNT-Reinforced Concrete under Uniaxial Compression

    No full text
    The incorporation of carbon nanotubes (CNTs) can enhance the mechanical properties of concrete. The stress–strain curves of CNT-reinforced concrete under uniaxial compression are investigated through an experimental program with different CNT and steel fiber proportions considered. The test results demonstrate that CNTs can increase both peak stress and peak strain, and steel fibers can further enhance the effect of CNTs. Additionally, steel fibers can effectively enhance both the strength and ductility. Theoretical models for the peak strain, initial elastic modulus, toughness index and relative absorbed energy are established. A theoretical model for the uniaxial compressive constitutive relationship of CNT-reinforced concrete considering CNT and steel fiber content is developed. Finite element (FE) modelling is developed to simulate the axial compression behavior of CNT-reinforced concrete

    High incidence of HPV infection in minors with oral squamous cell carcinoma

    No full text
    Abstract Background Oral squamous cell carcinoma in minors is considered to be a distinct entity from OSCC in older patients, with an uncertain etiology. Human papillomavirus (HPV) infection may trigger the initiation and promote the progression of OSCC, but these roles have not been firmly established.We aimed to explore the correlation between HPV infection and the development of oral squamous cell carcinoma in minors and know the characteristics of OSCC in young patients more thoroughly. Method From January 2013 to December 2022,6 cases of OSCC aged < 15 years were selected from the Department of Oral Pathology, Peking University School of Stomatology, Beijing, China. All cases underwent testing for high-risk HPV mRNA infection using the RNA scope technique, and immunohistochemical staining was performed to investigate the expression of p16, pan-cytokeratin (CK), CK5/6, CK7, CK8/18, epidermal growth factor receptor (EGFR), p53, and Ki-67. Furthermore, we reviewed the literature on OSCC in patients aged < 21 years. Conclusions Minors OSCC is associated with HPV infection, and that p16 can serve as an immunohistochemical marker of HPV positivity

    Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies

    No full text
    Abstract The past decade has seen significant advances in our understanding of Hedgehog (HH) signaling pathway in various biological events. HH signaling pathway exerts its biological effects through a complex signaling cascade involved with primary cilium. HH signaling pathway has important functions in embryonic development and tissue homeostasis. It plays a central role in the regulation of the proliferation and differentiation of adult stem cells. Importantly, it has become increasingly clear that HH signaling pathway is associated with increased cancer prevalence, malignant progression, poor prognosis and even increased mortality. Understanding the integrative nature of HH signaling pathway has opened up the potential for new therapeutic targets for cancer. A variety of drugs have been developed, including small molecule inhibitors, natural compounds, and long non-coding RNA (LncRNA), some of which are approved for clinical use. This review outlines recent discoveries of HH signaling in tissue homeostasis and cancer and discusses how these advances are paving the way for the development of new biologically based therapies for cancer. Furthermore, we address status quo and limitations of targeted therapies of HH signaling pathway. Insights from this review will help readers understand the function of HH signaling in homeostasis and cancer, as well as opportunities and challenges of therapeutic targets for cancer

    Comparative Transcriptome Analysis Identified Genes Associated with Fruit Size in Pepper (<i>Capsicum annuum</i> L.)

    No full text
    Pepper (Capsicum annuum L.) is one of the most widely grown vegetable crops in China, with widespread cultivation worldwide. Fruit weight (size) is a complex trait controlled by multiple factors and is an essential determinant of pepper yield. In this study, we analyzed the transcriptome of two pepper recombinant lines with different fruit weights, ‘B302’ and ‘B400’, at five developmental stages to reveal some of the differentially expressed genes and mechanisms controlling fruit weight. The results showed that 21,878 differential genes were identified between the two specimens. Further analysis of the differentially expressed genes revealed that Boron transporter 4 was significantly highly expressed in the large-fruited pepper and almost not expressed at all in the small-fruited pepper. CaAUX1, CaAUX/IAA, CaGH3, CaSAUR, and other related genes in the Auxin signal transduction pathway were highly expressed in the large-fruited pepper but significantly reduced in the small-fruited pepper. In addition, a comparison of differentially expressed transcription factors at different times revealed that transcription factors such as CaMADS3, CaAGL8, CaATHB13, and CaATHB-40 were highly differentially expressed in the large-fruited pepper, and these transcription factors may be related to pepper fruit expansion. Through weighted gene co-expression network analysis (WGCNA), the MEorangered4 module was shown to have a highly significant correlation with fruit weight, and the key modules were analyzed by constructing the hub core gene network interactions map and core genes regulating fruit weight such as APETALA 2 were found. In conclusion, we find that the expression of relevant genes at different developmental stages was different in ‘B302’ and ‘B400’, and it was hypothesized that these genes play essential roles in the development of fruit size and that the interactions occurring between transcription factors and phytohormones may regulate the development of fruit size
    corecore