5 research outputs found

    Miniaturized Thermal-Assisted Purge-and-Trap Technique Coupling with Surface-Enhanced Raman Scattering for Trace Analysis of Complex Samples

    No full text
    It still remains a great challenge for quantification of trace analytes in complex samples by surface-enhanced Raman scattering (SERS) technique due to potential matrix influence or weak SERS responses of analytes. In this work, a miniaturized thermal-assisted purge-and-trap (MTAPT) device was designed and developed to eliminate matrix influence coupled with derivatization method before SERS analysis. The design of MTAPT chamber was optimized based on quantitative calculation of its dead volume by computational fluid dynamics simulation. The small straight chamber was selected as an optimized design with a recovery of 96.1% for formaldehyde. The practical feasibility of MTAPT was validated based on four real analytical applications including phenthiol in industrial water, formaldehyde in flour, sulfion in wastewater, and methanol in industrial alcohol. The results showed that SERS responses of all analytes dramatically increased by eliminating sample matrices after MTAPT process. Phenthiol, formaldehyde, sulfion, and methanol in real samples could be accurately quantified with recoveries of 80.9ā€“110.0%, and the analytical results were validated by corresponding standard methods. The time consumption of MTAPT-SERS for real sample analysis including sample preparation and determination was within 16 min. It is highly expected that the combination of MTAPT technique with portable SERS instrument can greatly expand the range of SERS analysis. The proposed MTAPT-SERS method has high potential for on-site analysis of complex samples

    All-in-One Preparation Strategy Integrated in a Miniaturized Device for Fast Analyses of Biomarkers in Biofluids by Surface Enhanced Raman Scattering

    No full text
    Complex and tedious sample preparation processes have greatly limited rapid analyses of biological samples. In this work, an all-in-one sample preparation strategy based on a miniaturized gas membrane separation/oven ring enrichment (GMS/ORE) device was developed for efficient surface enhanced Raman scattering (SERS) analyses of trace biomarkers in biofluid samples. This strategy integrating gasification separation, liquid trapping, derivatization SERS activation, and coffee-ring enrichment could highly promote the efficiency of sample preparation. Meanwhile, the edges of membranes modified by the hydrophobic-infusing slippery liquid-induced uniform ā€œcoffee-ringā€ effect could significantly improve the sensitivity and stability for SERS quantification. By adapting proper derivatization approaches to the miniaturized GMS/ORE pretreatment, the matrix effects in samples could be prominently eliminated, and clear SERS responses could be obtained for the selective analyses of target biomarkers. The miniaturized GMS/ORE device was practically applied for SERS analyses of trace biomarkers in biofluids, including hydrogen sulfide in saliva samples, creatinine in serum samples, and sarcosine, creatinine, and dimethyl disulfide in urine samples. Accurate quantification of all biomarkers was achieved with recoveries of 89.5%ā€“120.0%, and the contents found by GMS/ORE-SERS matched well with those found by corresponding chromatographic methods with relative errors from āˆ’8.6% to 9.3%. The miniaturized GMS/ORE device with multiple parallel processing units could simultaneously treat eight samples in one run with a total analysis time of 40 min. Such an efficient all-in-one strategy integrated on a miniaturized device possesses great potential for fast on-site/point-of-care detection in analytical science and clinical medicine

    All-in-One Preparation Strategy Integrated in a Miniaturized Device for Fast Analyses of Biomarkers in Biofluids by Surface Enhanced Raman Scattering

    No full text
    Complex and tedious sample preparation processes have greatly limited rapid analyses of biological samples. In this work, an all-in-one sample preparation strategy based on a miniaturized gas membrane separation/oven ring enrichment (GMS/ORE) device was developed for efficient surface enhanced Raman scattering (SERS) analyses of trace biomarkers in biofluid samples. This strategy integrating gasification separation, liquid trapping, derivatization SERS activation, and coffee-ring enrichment could highly promote the efficiency of sample preparation. Meanwhile, the edges of membranes modified by the hydrophobic-infusing slippery liquid-induced uniform ā€œcoffee-ringā€ effect could significantly improve the sensitivity and stability for SERS quantification. By adapting proper derivatization approaches to the miniaturized GMS/ORE pretreatment, the matrix effects in samples could be prominently eliminated, and clear SERS responses could be obtained for the selective analyses of target biomarkers. The miniaturized GMS/ORE device was practically applied for SERS analyses of trace biomarkers in biofluids, including hydrogen sulfide in saliva samples, creatinine in serum samples, and sarcosine, creatinine, and dimethyl disulfide in urine samples. Accurate quantification of all biomarkers was achieved with recoveries of 89.5%ā€“120.0%, and the contents found by GMS/ORE-SERS matched well with those found by corresponding chromatographic methods with relative errors from āˆ’8.6% to 9.3%. The miniaturized GMS/ORE device with multiple parallel processing units could simultaneously treat eight samples in one run with a total analysis time of 40 min. Such an efficient all-in-one strategy integrated on a miniaturized device possesses great potential for fast on-site/point-of-care detection in analytical science and clinical medicine

    One-Step Hydrothermal Synthesis of 3D Petal-like Co<sub>9</sub>S<sub>8</sub>/RGO/Ni<sub>3</sub>S<sub>2</sub> Composite on Nickel Foam for High-Performance Supercapacitors

    No full text
    Co<sub>9</sub>S<sub>8</sub>, Ni<sub>3</sub>S<sub>2</sub>, and reduced graphene oxide (RGO) were combined to construct a graphene composite with two mixed metal sulfide components. Co<sub>9</sub>S<sub>8</sub>/RGO/Ni<sub>3</sub>S<sub>2</sub> composite films were hydrothermal-assisted synthesized on nickel foam (NF) by using a modified ā€œactive metal substrateā€ route in which nickel foam acted as both a substrate and Ni source for composite films. It is found that the Co<sub>9</sub>S<sub>8</sub>/RGO/Ni<sub>3</sub>S<sub>2</sub>/NF electrode exhibits superior capacitive performance with high capability (13.53 F cm<sup>ā€“2</sup> at 20 mA cm<sup>ā€“2</sup>, i.e., 2611.9 F g<sup>ā€“1</sup> at 3.9 A g<sup>ā€“1</sup>), excellent rate capability, and enhanced electrochemical stability, with 91.7% retention after 1000 continuous chargeā€“discharge cycles even at a high current density of 80 mA cm<sup>ā€“2</sup>

    Uncovering the Role of Crystal Phase in Determining Nonvolatile Flash Memory Device Performance Fabricated from MoTe<sub>2</sub>ā€‘Based 2D van der Waals Heterostructures

    No full text
    Although the crystal phase of two-dimensional (2D) transition metal dichalcogenides (TMDs) has been proven to play an essential role in fabricating high-performance electronic devices in the past decade, its effect on the performance of 2D material-based flash memory devices still remains unclear. Here, we report the exploration of the effect of MoTe2 in different phases as the charge-trapping layer on the performance of 2D van der Waals (vdW) heterostructure-based flash memory devices, where a metallic 1Tā€²-MoTe2 or semiconducting 2H-MoTe2 nanoflake is used as the floating gate. By conducting comprehensive measurements on the two kinds of vdW heterostructure-based devices, the memory device based on MoS2/h-BN/1Tā€²-MoTe2 presents much better performance, including a larger memory window, faster switching speed (100 ns), and higher extinction ratio (107), than that of the device based on the MoS2/h-BN/2H-MoTe2 heterostructure. Moreover, the device based on the MoS2/h-BN/1Tā€²-MoTe2 heterostructure also shows a long cycle (>1200 cycles) and retention (>3000 s) stability. Our study clearly demonstrates that the crystal phase of 2D TMDs has a significant impact on the performance of nonvolatile flash memory devices based on 2D vdW heterostructures, which paves the way for the fabrication of future high-performance memory devices based on 2D materials
    corecore