28 research outputs found

    Degraded Broadcast Channel with Side Information, Confidential Messages and Noiseless Feedback

    Full text link
    In this paper, first, we investigate the model of degraded broadcast channel with side information and confidential messages. This work is from Steinberg's work on the degraded broadcast channel with causal and noncausal side information, and Csiszaˊ\acute{a}r-K\"{o}rner's work on broadcast channel with confidential messages. Inner and outer bounds on the capacity-equivocation regions are provided for the noncausal and causal cases. Superposition coding and double-binning technique are used in the corresponding achievability proofs. Then, we investigate the degraded broadcast channel with side information, confidential messages and noiseless feedback. The noiseless feedback is from the non-degraded receiver to the channel encoder. Inner and outer bounds on the capacity-equivocation region are provided for the noncausal case, and the capacity-equivocation region is determined for the causal case. Compared with the model without feedback, we find that the noiseless feedback helps to enlarge the inner bounds for both causal and noncausal cases. In the achievability proof of the feedback model, the noiseless feedback is used as a secret key shared by the non-degraded receiver and the transmitter, and therefore, the code construction for the feedback model is a combination of superposition coding, Gel'fand-Pinsker's binning, block Markov coding and Ahlswede-Cai's secret key on the feedback system.Comment: Part of this paper has been accepted by ISIT2012, and this paper is submitted to IEEE Transactions on Information Theor

    Functional Dynamics Inside Nano- or Microscale Bio-Hybrid Systems

    Get PDF
    Soft nano- or microgels made by natural or synthetic polymers have been investigated intensively because of their board applications. Due to their porosity and biocompatibility, nano- or microgels can be integrated with various biologics to form a bio-hybrid system. They can support living cells as a scaffold; entrap bioactive molecules as a drug carrier or encapsulate microorganisms as a semi-permeable membrane. Especially, researchers have created various modes of functional dynamics into these bio-hybrid systems. From one side, the encapsulating materials can respond to the external stimulus and release the cargo. From the other side, cells can respond to physical, or chemical properties of the matrix and differentiate into a specific cell type. With recent advancements of synthetic biology, cells can be further programed to respond to certain signals, and express therapeutics or other functional proteins for various purposes. Thus, the integration of nano- or microgels and programed cells becomes a potential candidate in applications spanning from biotechnology to new medicines. This brief review will first talk about several nano- or microgels systems fabricated by natural or synthetic polymers, and further discuss their applications when integrated with various types of biologics. In particular, we will concentrate on the dynamics embedded in these bio-hybrid systems, to dissect their designs and sophisticated functions

    The significance of slab for structural response under travelling fires

    Get PDF
    The role of “travelling fires” is to ensure the robustness of structural design with large compartments under realistic fires, having a fire plume at the near-field, and a hot smoke layer preheating the ceiling at the farfield. Once the fire travels, the near-field has a leading edge representing the fire spread, and a trailing edge representing the burnout of the fuel. Though well understood by its definition, the mainstream of efforts on travelling fires for structural response is limited to 2D finite element modelling (FEM). This paper aims to identify the importance of slab inclusion with a 3D FEM structural model for steel-composite structures under travelling fires, with a special emphasis on the significance of ignoring the slab structural capacity contribution from a 2D simplified structural model. The role of fire protection scheme for 2D model against the 3D model on numerical predictions was also explored. It was found that the structural load path, and the potential structural failure mechanisms could be fundamentally different between the 3D model and the 2D model, i.e., with or without slabs. Although the 2D model tends to predict larger deflections (i.e. more conservative) than the 3D model, it could also significantly underestimate the large internal forces from the beams, which might overlook the connections failure under travelling fires. Further, due to the simplification of the 2D model omitting the significant stiffness contribution from the slab, the effect of the fire protection is likely to be amplified. It may be misleading for the performance-based structural fire design under different travelling fire scenarios. Hence, the 3D model is likely to be considered as necessary and feasible for structural fire analysis for travelling fires as a complement to the 2D model approach

    Distributed Learning over Networks with Graph-Attention-Based Personalization

    Full text link
    In conventional distributed learning over a network, multiple agents collaboratively build a common machine learning model. However, due to the underlying non-i.i.d. data distribution among agents, the unified learning model becomes inefficient for each agent to process its locally accessible data. To address this problem, we propose a graph-attention-based personalized training algorithm (GATTA) for distributed deep learning. The GATTA enables each agent to train its local personalized model while exploiting its correlation with neighboring nodes and utilizing their useful information for aggregation. In particular, the personalized model in each agent is composed of a global part and a node-specific part. By treating each agent as one node in a graph and the node-specific parameters as its features, the benefits of the graph attention mechanism can be inherited. Namely, instead of aggregation based on averaging, it learns the specific weights for different neighboring nodes without requiring prior knowledge about the graph structure or the neighboring nodes' data distribution. Furthermore, relying on the weight-learning procedure, we develop a communication-efficient GATTA by skipping the transmission of information with small aggregation weights. Additionally, we theoretically analyze the convergence properties of GATTA for non-convex loss functions. Numerical results validate the excellent performances of the proposed algorithms in terms of convergence and communication cost.Comment: Accepted for publication in IEEE TSP; with supplementary details for the derivation

    Effects of Culture Substrate Made of Poly(N-isopropylacrylamide-co-acrylic acid) Microgels on Osteogenic Differentiation of Mesenchymal Stem Cells

    No full text
    Poly(N-isopropylacrylamide) (PNIPAM)-based polymers and gels are widely known and studied for their thermoresponsive property. In the biomaterials category, they are regarded as a potential cell culture substrate, not only because of their biocompatibility, but also their special character of allowing controlled detachment of cells via temperature stimulus. Previous research about PNIPAM-based substrates mostly concentrated on their effects in cell adhesion and proliferation. In this study, however, we investigate the influence of the PNIPAM-based substrate on the differentiation capacity of stem cells. Especially, we choose P(NIPAM-AA) microgels as a culture dish coating and mesenchymal stem cells (MSCs) are cultured on top of the microgels. Interestingly, we find that the morphology of MSCs changes remarkably on a microgel-coated surface, from the original spindle form to a more stretched and elongated cell shape. Accompanied by the alternation in morphology, the expression of several osteogenesis-related genes is elevated even without inducing factors. In the presence of full osteogenic medium, MSCs on a microgel substrate show an enhancement in the expression level of osteopontin and alizarin red staining signals, indicating the physical property of substrate has a direct effect on MSCs differentiation

    The Single Cycle T-functions

    Get PDF
    Abstract In this paper the single cycle T-functions are studied. Making use of the explicit formulas of sum and product of 2-adic integers, we present the necessary and sufficient conditions on the generalized polynomial ˜ p(x) = a0 + ⊕a1x + ⊕·· · + ⊕adx d (mod2 n) being a single cycle T-function. Furthermore, for any given generalized polynomial, we can deduce some expressions about its coefficients by which we can determine whether it is single cycle or not. Key words T-function, single cycle, generalized polynomial

    How Does DNA Complex with Polyethylenimine with Different Chain Lengths and Topologies in Their Aqueous Solution Mixtures?

    No full text
    Complexation between DNA with anionic charges (P) and polyethylenimine (PEI) with cationic charges (N) in aqueous solution condenses DNA into small insoluble aggregates (polyplexes), facilitating its delivery into cells. The study of the captioned problem is long overdue. Using a combination of static and dynamic laser light scattering, we showed that for a given topology PEI with a high molar mass is more effective in condensing DNA, while for a given molar mass, linear chains are more efficient in neutralizing DNA than their branched counterparts. The resultant polyplexes become stable when N/P ≥ 6 and, quantitatively, on average contain only one DNA. The ratio of gyration to hydrodynamic radii decreases after the DNA and PEI complexation but increases with the N/P ratio. This study reveals that linear chains can align themselves on DNA to effectively neutralize its anionic charges so that DNA collapses in water mainly due to its insolubility like a neutral hydrocarbon chain, while cationic branched chains condense each DNA chain mainly by pulling its intrachain anionic segments together and coat its periphery to form a mushroom-like PEI shell. Such two different condensation ways are supported by the results of adding strong polyanions (dextran sulfate, DS) into the polyplexes dispersion; namely, DS can ripe linear chains away from each polyplex layer by layer, like peeling an onion, to completely release DNA, but mostly strip cationic branched chains coated on the periphery, not those inside, to partially release DNA
    corecore