1,540 research outputs found

    A New Two-Dimensional Functional Material with Desirable Bandgap and Ultrahigh Carrier Mobility

    Full text link
    Two-dimensional (2D) semiconductors with direct and modest bandgap and ultrahigh carrier mobility are highly desired functional materials for nanoelectronic applications. Herein, we predict that monolayer CaP3 is a new 2D functional material that possesses not only a direct bandgap of 1.15 eV (based on HSE06 computation), and also a very high electron mobility up to 19930 cm2 V-1 s-1, comparable to that of monolayer phosphorene. More remarkably, contrary to the bilayer phosphorene which possesses dramatically reduced carrier mobility compared to its monolayer counterpart, CaP3 bilayer possesses even higher electron mobility (22380 cm2 V-1 s-1) than its monolayer counterpart. The bandgap of 2D CaP3 can be tuned over a wide range from 1.15 to 0.37 eV (HSE06 values) through controlling the number of stacked CaP3 layers. Besides novel electronic properties, 2D CaP3 also exhibits optical absorption over the entire visible-light range. The combined novel electronic, charge mobility, and optical properties render 2D CaP3 an exciting functional material for future nanoelectronic and optoelectronic applications

    Poly[diaquabis­(μ4-fumarato-κ4 O 1:O 1′:O 4:O 4′)(μ4-fumarato-κ6 O 1:O 1,O 1′:O 4:O 4,O 4′)(μ2-fumaric acid-κ2 O 1:O 4)dipraseodymium(III)]

    Get PDF
    The title complex, [Pr2(C4H2O4)3(C4H4O4)(H2O)2]n, was synthesized by reaction of praseodymium(III) nitrate hexa­hydrate with fumaric acid in a water–ethanol (4:1) solution. The asymmetric unit comprises a Pr3+ cation, one and a half fumarate dianions (L 2−), one half-mol­ecule of fumaric acid (H2L) and one coordinated water mol­ecule. The carboxyl­ate groups of the fumarate dianion and fumaric acid exhibit different coordination modes. In one fumarate dianion, two carboxyl­ate groups are chelating with two Pr3+ cations, and the other two O atoms each coordinate a Pr3+ cation. Each O atom of the second fumarate dianion binds to a different Pr3+ cation. The fumaric acid employs one O atom at each end to bridge two Pr3+ cations. The Pr3+ cation is coordinated in a distorted tricapped trigonal–prismatic environment by eight O atoms of fumarate dianion or fumaric acid ligands and one water O atom. The PrO9 coordination polyhedra are edge-shared through one carboxyl­ate O atom and two carboxyl­ate groups, generating infinite praseodymium–oxygen chains, which are further connected by the ligands into a three-dimensional framework. The crystal structure is stabilized by O—H⋯O hydrogen-bond inter­actions between the coordin­ated water mol­ecule and the carboxyl­ate O atoms

    Demonstration of three‐dimensional indoor visible light positioning with multiple photodiodes and reinforcement learning

    Get PDF
    To provide high‐quality location‐based services in the era of the Internet of Things, visible light positioning (VLP) is considered a promising technology for indoor positioning. In this paper, we study a multi‐photodiodes (multi‐PDs) three‐dimensional (3D) indoor VLP system enhanced by reinforcement learning (RL), which can realize accurate positioning in the 3D space without any off-line training. The basic 3D positioning model is introduced, where without height information of the receiver, the initial height value is first estimated by exploring its relationship with the received signal strength (RSS), and then, the coordinates of the other two dimensions (i.e., X and Y in the horizontal plane) are calculated via trilateration based on the RSS. Two different RL processes, namely RL1 and RL2, are devised to form two methods that further improve horizontal and vertical positioning accuracy, respectively. A combination of RL1 and RL2 as the third proposed method enhances the overall 3D positioning accuracy. The positioning performance of the four presented 3D positioning methods, including the basic model without RL (i.e., Benchmark) and three RL based methods that run on top of the basic model, is evaluated experimentally. Experimental results verify that obviously higher 3D positioning accuracy is achieved by implementing any proposed RL based methods compared with the benchmark. The best performance is obtained when using the third RL based method that runs RL2 and RL1 sequentially. For the testbed that emulates a typical office environment with a height difference between the receiver and the transmitter ranging from 140 cm to 200 cm, an average 3D positioning error of 2.6 cm is reached by the best RL method, demonstrating at least 20% improvement compared to the basic model without performing RL

    3,3,4,4-Tetra­fluoro-1-[2-(3,3,4,4-tetra­fluoro­pyrrolidin-1-yl)phen­yl]pyrrolidine

    Get PDF
    The asymmetric unit of the title compound, C14H12F8N2, contains one tetra­fluoro­pyrrolidine system and one half-mol­ecule of benzene; the latter, together with a second heterocyclic unit, are completed by symmetry, with a twofold crystallographic axis crossing through both the middle of the bond between the C atoms bearing the heterocyclic rings and the opposite C—C bonds of the whole benzene mol­ecule. The pyrrolidine ring shows an envelope conformation with the apex at the N atom. The dihedral angle between the least-squares plane of this ring and the benzene ring is 36.9 (5)°. There are intra­molecular C—H⋯N inter­actions generating S(6) ring motifs. In the crystal structure, the mol­ecules are linked by C—H⋯F inter­actions, forming chains parallel to [010]
    corecore