2,938 research outputs found

    Outdoor Thermal Environments and Activities in Open Space: An Experiment Study in Humid Subtropical Climates

    Get PDF
    The outdoor thermal environment correlates with occupant behaviors in open spaces. The appropriate range of thermal environment that is conducive to outdoor activities, however, remains inadequately defined. Existing studies fail to characterize the behavioral responses to thermal environments in important dimensions including activity types, age or gender. We conducted field studies on six open spaces in Wuhan, China, a city with humid subtropical climate and ideal for this research. Data based on field observations, questionnaires, and measurement were collected under a variety of weather conditions over 4 years. We renovated a playground by adding shading shelters and vegetation cover to reduce summertime heat stress. On-site thermal environment were assessed using the Universal Thermal Climate Index (UTCI). Findings are as following: the outdoor thermal environment is a strong predictor of mean attendance over a period of time, but not spontaneous occupancy at a specific time or space; the Optimum Thermal Environment (OTE), defined as the range in which an open space is well-attended (attendance above 90% of peak value), is more consistent than the self-reported Thermal Acceptable Range (TAR) in this study. Behavioral responses to thermal environment differ by gender, age, and types of activities. The experiment confirmed the causality between outdoor thermal environment and activities: the renovated playground attracted 80% more occupants in summer; people stayed longer, reported less heat stress, and interacted with each other more often. Results remained significant after controlling for weather, air quality, daily and weekly routines. Findings had implications for the design of open spaces.postprin

    Generation of 3-Dimensional graph state with Josephson charge qubits

    Full text link
    On the basis of generations of 1-dimensional and 2-dimensional graph states, we generate a 3-dimensional N3-qubit graph state based on the Josephson charge qubits. Since any two charge qubits can be selectively and effectively coupled by a common inductance, the controlled phase transform between any two-qubit can be performed. Accordingly, we can generate arbitrary multi-qubit graph states corresponding to arbitrary shape graph, which meet the expectations of various quantum information processing schemes. All the devices in the scheme are well within the current technology. It is a simple, scalable and feasible scheme for the generation of various graph states based on the Josephson charge qubits.Comment: 4 pages, 4 figure

    Magnetic plasmonic particles for SERS-based bacteria sensing: A review

    Get PDF
    This review describes recent advances in the use of magnetic-plasmonic particles (MPPs) for bacteria detection by Surface-Enhanced Raman Scattering (SERS). Pathogenic bacteria pollution has always been a major threat to human health and safety. SERS spectroscopy has emerged as a powerful and promising technique for sensitive and selective detection of pathogen bacte-ia. MPPs are considered as a versatile SERS platform for their excellent plasmonic properties and good magnetic responsiveness. Improved preparation method and typical characterization technique of MPPs are introduced, focusing on the thin and continuous metallic shell covering process. Consequently, the SERS-based sensing methods for bacteria identification were discussed, including the label-free and label-based methods. Finally, an overview of the current state of the field and our perspective on future development directions are given

    Cosmological Constraint and Analysis on Holographic Dark Energy Model Characterized by the Conformal-age-like Length

    Full text link
    We present a best-fit analysis on the single-parameter holographic dark energy model characterized by the conformal-age-like length, L=1a4(t)0tdta3(t)L=\frac{1}{a^4(t)}\int_0^tdt' a^3(t') . Based on the Union2 compilation of 557 supernova Ia data, the baryon acoustic oscillation results from the SDSS DR7 and the cosmic microwave background radiation data from the WMAP7, we show that the model gives the minimal χmin2=546.273\chi^2_{min}=546.273, which is comparable to χΛCDM2=544.616\chi^2_{\Lambda{\rm CDM}}=544.616 for the Λ\LambdaCDM model. The single parameter dd concerned in the model is found to be d=0.232±0.006±0.009d=0.232\pm 0.006\pm 0.009. Since the fractional density of dark energy Ωded2a2\Omega_{de}\sim d^2a^2 at a1a \ll 1, the fraction of dark energy is naturally negligible in the early universe, Ωde1\Omega_{de} \ll 1 at a1a \ll 1. The resulting constraints on the present fractional energy density of matter and the equation of state are \Omega_{m0}=0.286^{+0.019}_{-0.018}^{+0.032}_{-0.028} and w_{de0}=-1.240^{+0.027}_{-0.027}^{+0.045}_{-0.044} respectively. The model leads to a slightly larger fraction of matter comparing to the Λ\LambdaCDM model. We also provide a systematic analysis on the cosmic evolutions of the fractional energy density of dark energy, the equation of state of dark energy, the deceleration parameter and the statefinder. It is noticed that the equation of state crosses from wde>1w_{de}>-1 to wde<1w_{de}<-1, the universe transits from decelerated expansion (q>0q>0) to accelerated expansion (q<0q<0) recently, and the statefinder may serve as a sensitive diagnostic to distinguish the CHDE model with the Λ\LambdaCDM model.Comment: 17 pages, 5 figures, minor changes for the fitting data, references adde

    Parallelizing Gaussian Process Calculations in R

    Get PDF
    We consider parallel computation for Gaussian process calculations to overcome computational and memory constraints on the size of datasets that can be analyzed. Using a hybrid parallelization approach that uses both threading (shared memory) and message-passing (distributed memory), we implement the core linear algebra operations used in spatial statistics and Gaussian process regression in an R package called bigGP that relies on C and MPI. The approach divides the covariance matrix into blocks such that the computational load is balanced across processes while communication between processes is limited. The package provides an API enabling R programmers to implement Gaussian process-based methods by using the distributed linear algebra operations without any C or MPI coding. We illustrate the approach and software by analyzing an astrophysics dataset with n = 67, 275 observations

    On War: The Dynamics of Vicious Civilizations

    Full text link
    The dynamics of ``vicious'', continuously growing civilizations (domains), which engage in ``war'' whenever two domains meet, is investigated. In the war event, the smaller domain is annihilated, while the larger domain is reduced in size by a fraction \e of the casualties of the loser. Here \e quantifies the fairness of the war, with \e=1 corresponding to a fair war with equal casualties on both side, and \e=0 corresponding to a completely unfair war where the winner suffers no casualties. In the heterogeneous version of the model, evolution begins from a specified initial distribution of domains, while in the homogeneous system, there is a continuous and spatially uniform input of point domains, in addition to the growth and warfare. For the heterogeneous case, the rate equations are derived and solved, and comparisons with numerical simulations are made. An exact solution is also derived for the case of equal size domains in one dimension. The heterogeneous system is found to coarsen, with the typical cluster size growing linearly in time tt and the number density of domains decreases as 1/t1/t. For the homogeneous system, two different long-time behaviors arise as a function of \e. When 1/2<\e\leq 1 (relatively fair wars), a steady state arises which is characterized by egalitarian competition between domains of comparable size. In the limiting case of \e=1, rate equations which simultaneously account for the distribution of domains and that of the intervening gaps are derived and solved. The steady state is characterized by domains whose age is typically much larger than their size. When 0\leq\e<1/2 (unfair wars), a few ``superpowers'' ultimately dominate. Simulations indicate that this coarsening process is characterized by power-law temporal behavior, with non-universalComment: 43 pages, plain TeX, 12 figures included, gzipped and uuencode

    Phenotypic Characterization, Osteoblastic Differentiation, and Bone Regeneration Capacity of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells

    Full text link
    To enhance the understanding of differentiation patterns and bone formation capacity of hESCs, we determined (1) the temporal pattern of osteoblastic differentiation of human embryonic stem cell derived mesenchymal stem cells (hESC-MSCs), (2) the influence of a three-dimensional matrix on the osteogenic differentiation of hESC-MSCs in long-term culture, and (3) the bone-forming capacity of osteoblast-like cells derived from hESC-MSCs in calvarial defects. Incubation of hESC-MSCs in osteogenic medium induced osteoblastic differentiation of hESC-MSCs into mature osteoblasts in a similar chronological pattern to human bone marrow stromal cells and primary osteoblasts. Osteogenic differentiation was enhanced by culturing the cells on three-dimensional collagen scaffolds. Fluorescent-activated cell sorting of alkaline phosphatase expressing cells was used to obtain an enriched osteogenic cell population for in vivo transplantation. The identification of green fluorescence protein and expression of human-specific nuclear antigen in osteocytes in newly formed bone verified the role of transplanted human cells in the bone regeneration process. The current cell culture model and osteogenic cell enrichment method could provide large numbers of osteoprogenitor cells for analysis of differentiation patterns and cell transplantation to regenerate skeletal defects.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78154/1/scd.2008.0310.pd
    corecore