
JSS Journal of Statistical Software
January 2015, Volume 63, Issue 10. http://www.jstatsoft.org/

Parallelizing Gaussian Process Calculations in R

Christopher J. Paciorek
University of California,

Berkeley

Benjamin Lipshitz
University of California,

Berkeley

Wei Zhuo
Georgia Institute

of Technology

Prabhat
Lawrence Berkeley

National Laboratory

Cari G. Kaufman
University of California,

Berkeley

Rollin C. Thomas
Lawrence Berkeley

National Laboratory

Abstract

We consider parallel computation for Gaussian process calculations to overcome com-
putational and memory constraints on the size of datasets that can be analyzed. Using a
hybrid parallelization approach that uses both threading (shared memory) and message-
passing (distributed memory), we implement the core linear algebra operations used in
spatial statistics and Gaussian process regression in an R package called bigGP that relies
on C and MPI. The approach divides the covariance matrix into blocks such that the
computational load is balanced across processes while communication between processes
is limited. The package provides an API enabling R programmers to implement Gaussian
process-based methods by using the distributed linear algebra operations without any C
or MPI coding. We illustrate the approach and software by analyzing an astrophysics
dataset with n = 67, 275 observations.

Keywords: distributed computation, kriging, linear algebra.

1. Introduction

Gaussian processes are widely used in statistics and machine learning for spatial and spatio-
temporal modeling (Banerjee, Gelfand, and Sirmans 2003), design and analysis of computer
experiments (Kennedy and O’Hagan 2001), and non-parametric regression (Rasmussen and
Williams 2006). One popular example is the spatial statistics method of kriging, which is
equivalent to conditional expectation under a Gaussian process model for the unknown spatial
field. However standard implementations of Gaussian process-based methods are computa-

http://www.jstatsoft.org/

2 Parallelizing Gaussian Process Calculations in R

tionally intensive because they involve calculations with covariance matrices of size n by n
where n is the number of locations with observations. In particular the computational bottle-
neck is generally the Cholesky decomposition of the covariance matrix, whose computational
cost is of order n3.

For example, a basic spatial statistics model (in particular a geostatistical model) can be
specified in a hierarchical fashion as

Y |g,θ ∼ N (g,Cy(θ))

g|θ ∼ N (µ(θ),Cg(θ)),

where g is a vector of latent spatial process values at the n locations, Cy(θ) is an error
covariance matrix (often diagonal), µ(θ) is the mean vector of the latent process, Cg(θ) is
the spatial covariance matrix of the latent process, and θ is a vector of unknown parameters.
We can marginalize over g to obtain the marginal likelihood,

Y |θ ∼ N (µ(θ),C(θ)),

where C(θ) = Cy(θ) +Cg(θ). This gives us the marginal density,

f(y) ∝ |C(θ)|−1/2 exp

{
−1

2
(y − µ(θ))>(C(θ))−1(y − µ(θ))

}
,

which is maximized over θ to find the maximum likelihood estimator. At each iteration in
the maximization, the expensive computations are to compute the entries of the matrix C(θ)
as a function of θ, calculate the Cholesky decomposition, LL> = C(θ), and solve a system
of equations L−1(y − µ(θ)) via a forwardsolve operation. Given the MLE, θ̂, one might
then do spatial prediction, calculate the variance of the prediction, and simulate realizations
conditional on the data. These additional tasks involve the same expensive computations plus
a few additional closely-related computations.

In general the Cholesky decomposition will be the rate-limiting step in these tasks, although
calculation of covariance matrices can also be a bottleneck. In addition to computational
limitations, memory use can be a limitation, as storage of the covariance matrix involves n2

floating points. For example, simply storing a covariance matrix for n = 20, 000 observations
in memory uses approximately 3.2 GB of RAM. As a result of the computational and memory
limitations, standard spatial statistics methods are typically applied to datasets with at most
a few thousand observations.

To overcome these limitations, a small industry has arisen to develop computationally-efficient
approaches to spatial statistics, involving reduced rank approximations (Kammann and Wand
2003; Banerjee, Gelfand, Finley, and Sang 2008; Cressie and Johannesson 2008), tapering the
covariance matrix to induce sparsity (Furrer, Genton, and Nychka 2006; Kaufman, Schervish,
and Nychka 2008), approximation of the likelihood (Stein, Chi, and Welty 2004), and fitting
local models by stratifying the spatial domain (Gramacy and Lee 2008), among others. In
the kriging context, estimation of the parameters using the variogram, a method of moments
estimator, combined with prediction within local neighborhoods is computationally tractable
for large datasets.

At the same time, computer scientists have developed and implemented parallel linear algebra
algorithms that use modern distributed memory and multi-core hardware. In our work, rather

Journal of Statistical Software 3

than modifying the statistical model, as statisticians have focused on, we consider the use of
parallel algorithms to overcome computational limitations, enabling analyses with much larger
covariance matrices than would be otherwise possible.

We present an algorithm and R (R Core Team 2014) package, bigGP, for distributed linear
algebra calculations focused on those used in spatial statistics and closely-related Gaussian
process regression methods. The approach divides the covariance matrix (and other neces-
sary matrices and vectors) into blocks, with the blocks distributed amongst processors in
a distributed computing environment. The algorithm builds on that encoded within the
widely-used parallel linear algebra package, ScaLAPACK (Blackford et al. 1987), a parallel
extension to the standard LAPACK (Anderson 1999) routines. The core functions in the
bigGP package are C functions, with R wrappers, that rely on standard BLAS (Dongarra,
Croz, Hammarling, and Duff 1990) functionality and on MPI (Gropp, Lusk, and Skjellum
1999) for message passing. This set of core functions includes Cholesky decomposition, for-
wardsolve and backsolve, and crossproduct calculations. These functions, plus some auxiliary
functions for communication of inputs and outputs to the processes, provide an API through
which an R programmer can implement methods for Gaussian-process-based computations.
Using the API, we provide a set of methods for the standard operations involved in kriging
and Gaussian process regression, namely

� likelihood optimization,

� prediction,

� calculation of prediction uncertainty,

� unconditional simulation of Gaussian processes, and

� conditional simulation given data.

These methods are provided as R functions in the package. We illustrate the use of the
software for Gaussian process regression in an astrophysics application.

We close this introduction by situating our software within the context of other software for
Gaussian process modeling. A broad variety of software, both within and outside of R, is
available for working with Gaussian processes, much of it implementing various approximate
methods. However, there is little parallelized software for working with Gaussian processes
without approximations. R provides a wide variety of tools for parallelization, best summa-
rized in the“High Performance Computing”task view (Eddelbuettel 2014) on the Comprehen-
sive R Archive Network (CRAN), as well as a variety of tools for Gaussian process models. The
Gaussian process-related packages available on CRAN do not provide parallelized software for
exact calculations, with packages such as mlegp (Dancik and Dorman 2008), gptk (Kalaitzis,
Gao, Honkela, and Lawrence 2014), laGP (Gramacy 2014), and GPfit (MacDonald, Ranjan,
and Chipman 2013) implementing either approximate methods or non-parallel algorithms for
exact computations. The packages MAGMA (Tomov, Nath, Du, and Dongarra 2011) and
openCL (Stone, Gohara, and Shi 2010) provide general purpose interfaces to GPU libraries
that could be used to develop user-friendly tools for parallel Gaussian process calculations. Fi-
nally, and most promisingly, the recently-released pbd packages (Ostrouchov, Chen, Schmidt,
and Patel 2012) for working with large datasets wrap ScaLAPACK to implement parallel

4 Parallelizing Gaussian Process Calculations in R

linear algebra. pbd allows one to distribute matrices amongst multiple processors, with dis-
tributed linear algebra computations carried out without collecting intermediate results back
to a single processor. Thus, an alternative to the core functions in our software would make
use of the pbd functions in place of our API, with our methods for kriging and Gaussian pro-
cess regression instead using pbd on the back end. Note that while our software is based upon
the blocked approach of ScaLAPACK (Section 2.1), we tailor the algorithm to achieve bet-
ter load-balancing and limit communication for Cholesky factorization (Section 2.2). Looking
outside of R, the ScalaGAUSS package (Anitescu, Chen, and Stein 2014) implements (in C++
and MATLAB) likelihood maximization for Gaussian processes using a stochastic approxima-
tion to the likelihood that allows for optimization using matrix-vector calculations that are of
order n log n (Anitescu, Chen, and Wang 2012). Recent advances in communication-avoiding
linear algebra (Ballard, Demmel, Holtz, and Schwartz 2011) in general, and especially for
Cholesky decomposition (Georganas, González-Domı́nguez, Solomonik, Zheng, no, and Yelick
2012) may prove useful in speeding up parallel Gaussian process computation, but have not
yet been incorporated into standard libraries like ScaLAPACK.

2. Parallel algorithm and software implementation

2.1. Distributed linear algebra calculations

Parallel computation can be done in both shared memory and distributed memory contexts.
Each uses multiple CPUs. In a shared memory context (such as computers with one or
more chips with multiple cores), multiple CPUs have access to the same memory and so-
called ‘threaded’ calculations can be done, in which code is written (e.g., using the openMP
protocol, Chapman, Jost, and Pas 2008) to use more than one CPU at once to carry out
a task, with each CPU having access to the objects in memory. In a distributed memory
context, one has a collection of nodes, each with their own memory. Any information that
must be shared with other nodes must be communicated via message-passing, such as using
the MPI standard. Our distributed calculations use both threading and message-passing to
exploit the capabilities of modern computing clusters with multiple-core nodes.

We begin by describing a basic parallel Cholesky decomposition, sometimes known as Crout’s
algorithm, which is done on blocks of the matrix and is implemented in ScaLAPACK. Figure 1
shows a schematic of the block-wise Cholesky factorization, where the covariance matrix is
divided into 6 blocks, a B = 3 by B = 3 array of blocks (storing only the lower blocks of
the symmetric matrix). The arrows show the dependence of each block on the other blocks;
an arrow connecting two blocks stored on different nodes indicates that communication is
necessary between those nodes. For the Cholesky decomposition, the calculations for the
diagonal blocks all involve Cholesky decompositions (and symmetric matrix multiplication for
all but the first block), while those for the off-diagonal blocks involve forwardsolve operations
and (for all but the first column of blocks) matrix multiplication and subtraction. Most of
the total work is in the matrix multiplications.

The first block must be factored before the forwardsolve can be applied to blocks 2 and 3.
After the forwardsolves, all the remaining blocks can be updated with a matrix multiplication
and subtraction. At this point the decomposition of blocks 1–3 is complete and they will
not be used for the rest of the computation. This procedure is repeated along each block

Journal of Statistical Software 5

4(2,2)

5(3,2)

1(1,1)

3(3,1)

2(2,1)

6(3,3)

4(2,2)

5(3,2)

1(1,1)

3(3,1)

2(2,1)

6(3,3)

4(2,2)

5(3,2)

1(1,1)

3(3,1)

2(2,1)

6(3,3)

covariance marix factored result just updated

Figure 1: Diagram of the first steps in the distributed Cholesky factorization. Arrows indicate
dependencies between processes. Orange coloring indicates computations carried out in each
step, and green indicates parts of the matrix that are completely factored as of the previous
step. The labels of the form “id(x,y)” indicate the process ID and Cartesian coordinates of
the process.

column, so for example block 6 must wait for blocks 4 and 5 to finish before all the necessary
components are available to finish their own calculations.

To specify the distributed algorithm, there are several choices to be made: the number of
blocks, B, how to distribute these blocks amongst computational processes, how to distribute
these processes amongst the nodes, and how many nodes to use. We discuss the tradeoffs
involved in these choices next and the choices that our algorithm makes in Section 2.2.

Given a matrix of a given size, specifying the number of blocks is equivalent to choosing the
size of the blocks. Larger blocks allow for more efficient local computations and less total
communication. The largest effect here is the on-node cache subsystem, which allows each
node to run near its peak performance only if the ratio of computation to memory traffic is
high enough. The computational efficiency will increase with the block size until the blocks
are large enough to fill the cache available to one process. For example, if 8MB of cache
are available, one would like to have a block size at least 1024 × 1024. However, smaller
blocks allow the algorithm to better balance the computational load between the processes
(and therefore ultimately among the cores and nodes of the computer) by assigning multiple
blocks to each process. The first block must finish before anything else can be done; assuming
that each block is assigned to only one process, all the other processes must wait for this
block to be factorized before they can begin computation. More generally, the diagonal and
first off-diagonal blocks form a critical path of the algorithm. In Figure 1, this critical path is
of blocks 1, 2, 4, 5, 6. The decomposition, forwardsolves, and multiplicative updates of each
of these blocks must be done sequentially. Decreasing the block size decreases the amount of
work along this critical path, thus improving the load balance. Put another way, decreasing
the block size decreases how long the majority of the processes wait for the processes in a
given column to finish before they can use the results from that column to perform their own
computation.

Given a matrix of a fixed size and a fixed number of nodes, if we were to use the maximum
block size, we would distribute one block per process and one process per node. If we use a
smaller block size, we can accommodate the extra blocks either by assigning multiple blocks
to a each process, or multiple processes to each node. Consider first running just one process

6 Parallelizing Gaussian Process Calculations in R

per node. For the linear algebra computations, by using a threaded BLAS library (such as
openBLAS, Zhang 2013, MKL, Intel 2013, or ACML, AMD 2013), it is still possible to attain
good multi-core performance on a single process. However, any calculations that are not
threaded will not be able to use all of the cores on a given node, reducing computational
efficiency. An example of this occurs in our R package where the user-defined covariance
function (which is an R function) will typically not be threaded unless the user codes it in
threaded C code (e.g., using openMP) and calls the C code from the R function or uses a
parallel framework in R.

Alternatively, one could specify the block size and the number of nodes such that more than
one process runs on each node. For non-threaded calculations, this manually divides the
computation amongst multiple cores on a node, increasing efficiency. However it reduces
the number of cores available for a given threaded calculation (presuming that cores are
assigned exclusively to a single process, as when using the openMPI (Gabriel et al. 2004)
implementation with Rmpi (Yu 2002)) and may decrease efficiency by dividing calculations
into smaller blocks with more message passing. This is generally a satisfactory solution in a
small cluster, but will lose efficiency past a few tens of nodes. Finally, one can assign multiple
blocks per process, our chosen approach, described next.

2.2. Our algorithm

Our approach assigns one process per node, but each process is assigned multiple blocks.
This allows each process access to all the cores on a node to maximally exploit threading. We
carefully choose which blocks are assigned to each process to achieve better load-balancing and
limit communication. We choose an efficient order for each process to carry out the operations
for the blocks assigned to it. Our package is flexible enough to allow the user to instead run
multiple processes per node, which may improve the efficiency of the user-defined covariance
function at the expense of higher communication costs in the linear algebra computations.

We require that the number of processes is P = D(D + 1)/2 ∈ {1, 3, 6, 10, 15, . . .} for some
integer value of D. We introduce another quantity h that determines how many blocks each
process owns. The number of blocks is given by B = hD, and so the block size is

⌈
n
hD

⌉
,

where n is the order of the matrix. See Figure 2 for an example of the layout with D = 4 and
either h = 1 or h = 3. Each “diagonal process” has h(h+ 1)/2 blocks, and each “off-diagonal
process” has h2 blocks of the triangular matrix.

As discussed above, small values of h increase on-node efficiency and reduce communication,
but large values of h improve load balance. On current architectures, a good heuristic is to
choose h so that the block size is about 1000, but the user is encouraged to experiment and
determine what value works best for a given computer and problem size. When using more
than 8 cores per process, the block size should probably be increased. Note that we pad the
input matrix so that the number of rows and columns is a multiple of hD. This padding will
have a minimal effect on the computation time; if the block size is chosen to be near 1000 as
we suggest, the padding will be at most one part in a thousand.

Note that when h > 1, there are essentially two levels of blocking, indicated by the thin black
lines and the thick blue lines in Figure 2. Our algorithm is guided by these blocks. At a high
level, the algorithm sequentially follows the Cholesky decomposition of the large (blue) blocks
as described in the previous section. Each large block is divided among all the processors, and
all the processors participate in each step. For example, the first step is to perform Cholesky

Journal of Statistical Software 7

1

3
4

2 5

7
6 8

9 10

1

3
4

2 5

7
6 8

9 10

1

3
4

2 5

7
6 8

9 10

1

3
4

2 5

7
6 8

9 10
1

3
4

2 5

7
6 8

9 10
9
7
4

6
32

1

3
4

2 5

7
6 8

9 10
9
7
4

6
32

1

3
4

2 5

7
6 8

9 10
9
7
4

6
32

Figure 2: The matrix layout used by our algorithm with D = 4 and h = 1 (left) or h = 3
(right). The numbers indicate which process owns a given block. When h = 1, each of the
10 processes owns one block of the matrix. When h = 3, the blocks are a third the size in
each dimension. The diagonal processes (1, 5, 8, 10) each own h(h+ 1)/2 = 6 blocks, and the
off-diagonal processes (2, 3, 4, 6, 7, 9) each own h2 = 9 blocks.

decomposition on the first large block. To do so, we follow exactly the h = 1 algorithm
(making use of the Cartesian coordinate identification system indicated in Figure 1):

1: for i = 1 to D do
2: Processor (i, i) computes the Cholesky decomposition of its block
3: parallel for j = i+ 1 to D do
4: Processor (i, i) sends its block to processor (j, i)
5: Processor (j, i) updates its block with a triangular solve
6: parallel for k = i+ 1 to D do
7: if k ≤ j then
8: Processor (j, i) sends its block to processor (j, k)
9: else

10: Processor (j, i) sends its block to processor (k, j)
11: end if
12: end parallel for
13: end parallel for
14: parallel for j = i+ 1 to D do
15: parallel for k = j + 1 to D do
16: Processor (k, j) updates its block with a matrix multiplication
17: end parallel for
18: end parallel for
19: end for

The h = 1 algorithm is poorly load-balanced; for example going from D = 1 to D = 2 (one
process to three processes), one would not expect any speedup because every operation is
along the critical path. However, because it is a small portion of the entire calculation for
h > 1, the effect on the total runtime is small. Instead, most of the time is spent in matrix
multiplications of the large blue blocks, which are well load-balanced.

8 Parallelizing Gaussian Process Calculations in R

Memory use

The number of informative entries in a triangular or symmetric n×n matrix is n(n+1)/2. Ide-
ally, it would be possible to perform computations even if there is only barely this much mem-
ory available across all the nodes, that is if there were enough memory for n(n+1)/(D(D+1))
entries per node. Our algorithm does not reach this ideal, but it has a small memory overhead
that decreases as D or h increase. The maximum memory use is by the off-diagonal nodes
that own h2 blocks. Additionally, during the course of the algorithm they must temporarily
store up to 4 more blocks. Assuming for simplicity that hD evenly divides n, the maximum
memory use on a node is then

M ≤
(n

hD

)2
(h2 + 4) =

n(n+ 1)

D(D + 1)

(
1 +

4nD + n2h2 + 4n−Dh2

Dh2n+Dh2

)
<

n(n+ 1)

D(D + 1)

(
1 +

4

h2
+

1

D
+

4

Dh2

)
.

For example when h = 3 and D = 4, the memory required is about 1.8 times the mem-
ory needed to hold a triangular matrix. Increasing h and D decreases this overhead factor
toward 1.

Advantages of our approach

So far we have focused our discussion on the Cholesky factorization, as this is generally the
rate-limiting step in Gaussian process methods. Our approach and software also improve
computational efficiency by exploiting the sequential nature of Gaussian process calculations,
in which each task relies on a sequence of linear algebra calculations, many or all of which
can be done in a distributed fashion. Our framework generates matrices in a distributed
fashion and keeps them distributed throughout a sequence of linear algebra computations,
collecting results back to the master process only at the conclusion of the task. For example
in likelihood calculation, we need not collect the full Cholesky factor at the master process
but need only collect the (scalar) log-likelihood value that is computed using a sequence of
distributed calculations (the Cholesky factorization, followed by a forwardsolve, calculation of
a sum of squares, and calculation of a log-determinant). For prediction, if we have computed
the Cholesky during likelihood maximization, we can use the distributed Cholesky as input to
distributed forwardsolve and backsolve operations, collecting only the vector of predictions at
the master process. This feature is critical both for avoiding the large communication overhead
in collecting a matrix to a single processor and to allowing computations on matrices that are
too big to fit on one node.

ScaLAPACK is an alternative to our approach and uses a very similar algorithmic approach.
In Section 3 we show that our implementation is as fast or faster than using ScaLAPACK
for the critical Cholesky decomposition. In some ways our implemenatation is better opti-
mized for triangular or symmetric matrices. When storing symmetric matrices, ScaLAPACK
requires memory space for the entire square matrix, whereas our implementation only re-
quires a small amount more memory than the lower triangle takes. Furthermore, unlike the
RScaLAPACK (Yoginath, Samatova, Bauer, Kora, Fann, and Geist 2005) interface (which is
no longer available as a current R package on CRAN) to ScaLAPACK, our implementation
carries out multiple linear algebra calculations without collecting all the results back to the
master process and calculates the covariance matrix in a distributed fashion.

Journal of Statistical Software 9

2.3. The bigGP R package

Overview

The R package bigGP implements a set of core functions, all in a distributed fashion, that
are useful for a variety of Gaussian process-based computational tasks. In particular we
provide Cholesky factorization, forwardsolve, backsolve and multiplication operations, as well
as a variety of auxiliary functions that are used with the core functions to implement high-
level statistical tasks. We also provide additional R functions for distributing objects to the
processes, managing the objects, and collecting results at the master process.

This set of R functions provides an API for R developers. A developer can implement new
tasks entirely in R without needing to know or use C or MPI. Indeed, using the API, we
implement standard Gaussian process tasks: log-likelihood calculation, likelihood optimiza-
tion, prediction, calculation of prediction uncertainty, unconditional simulation of Gaussian
processes, and simulation of Gaussian process realizations conditional on data. Distributed
construction of mean vectors and covariance matrices is done using user-provided R functions
that calculate the mean and covariance functions given a vector of parameters and arbitrary
inputs.

API

The API consists of

� basic functions for listing and removing objects on the slave processes and copying
objects to and from the slave processes: remoteLs, remoteRm, push, pull;

� functions for determining the lengths and indices of vectors and matrices assigned to
a given slave process: getDistributedVectorLength, getDistributedTriangular-
MatrixLength, getDistributedRectangularMatrixLength, remoteGetIndices;

� functions that distribute and collect objects to and from the slave processes, masking
the details of how the objects are divided amongst the processes: distributeVector,
collectVector, collectDiagonal, collectTriangularMatrix, collectRectangular-
Matrix; and

� functions that carry out linear algebra calculations on distributed vectors and ma-
trices: remoteCalcChol, remoteForwardsolve, remoteBacksolve, remoteMultChol,
remoteCrossProdMatVec, remoteCrossProdMatSelf, remoteCrossProdMatSelfDiag,
remoteConstructRnormVector, and remoteConstructRnormMatrix. In addition there
is a generic remoteCalc function that can carry out an arbitrary function call with
either one or two inputs.

The package must be initialized after loading, which is done with the bigGP.init function.
During initialization, slave processes are spawned and R packages loaded on the slaves, parallel
random number generation is set up, and blocks are assigned to slaves, with this information
stored on each slave process in the .bigGP object. Users need to start R in such a way (e.g.,
through a queueing system or via mpirun) that P slave processes can be initialized, plus
one for the master process, for a total of P + 1. P should be such that P = D(D + 1)/2 for

10 Parallelizing Gaussian Process Calculations in R

integer D, i.e., P ∈ 3, 6, 10, 15, One may wish to have one process per node, with threaded
calculations on each node via a threaded BLAS (Basic Linear Algebra Subprograms), or one
process per core (in particular when a threaded BLAS is not available). The determination of
the number of cores per process is system-specific and not set at the level of R or by bigGP.
Rather, the user must request a total number of processes and cores per process via whatever
queueing system is in place (if any) on the system they are using or by specifying the hosts
if simply using mpirun. We note that apart from requesting resources from the system, the
user must specify only a single number, P , in R.

Our theoretical assessment and empirical tests suggest that the blocks of distributed matrices
should be approximately of size 1000 by 1000. To achieve this, the package chooses h given
the number of observations, n, and the number of processes, P , such that the blocks are
approximately that size, i.e., n/(hD) ≈ 1000. However the user can override the default and
we recommend that the user test different values on their system.

Kriging implementation

The kriging implementation is built around two reference classes.

The first is a krigeProblem class that contains metadata about the problem and manages the
analysis steps. To set up the problem and distribute inputs to the processes, one instantiates
an object in the class. The metadata includes the block replication factors and information
about which calculations have been performed and which objects are up-to-date (i.e., are
consistent with the current parameter values). This allows the package to avoid repeating
calculations when parameter values have not changed. Objects in the class are stored on the
master process.

The second is a distributedKrigeProblem class that contains the core distributed objects
and information about which pieces of the distributed objects are stored in a given process.
Objects in this class are stored on the slave processes. By using a reference class we create a
namespace that avoids name conflicts amongst multiple problems, and we allow the distributed
linear algebra functions to manipulate the (large) blocks by reference rather than by value.

The core methods of the krigeProblem class are a constructor; methods for constructing
mean vectors and covariance matrices given user-provided mean and covariance functions;
methods for calculating the log determinant, calculating the log density, optimizing the density
with respect to the parameters, prediction (with prediction standard errors), finding the full
prediction variance matrix, and simulating realizations conditional on the data. Note that
from a Bayesian perspective, prediction is just calculation of the posterior mean, the prediction
variance matrix is just the posterior variance, and simulation of realizations is just simulation
from the posterior. All of these are conditional on the parameter estimates, so this can be
viewed as empirical Bayes.

It is possible to have multiple krigeProblem objects defined at once, with separate objects in
memory and distributed amongst the processes. However, the partition factor, D, is constant
within a given R session.

Code that uses the krigeProblem class to analyze an astrophysics data example is provided
in Section 4.

Journal of Statistical Software 11

Using the API

To extend the package to implement other Gaussian process methodologies, the two key
elements are construction of the distributed objects and use of the core distributed linear
algebra functions. Construction of the distributed objects should mimic the
localKrigeProblemConstructMean and localKrigeProblemConstructCov functions in the
package. These functions use user-provided functions that operate on a set of parameters, a
list containing additional inputs, and a set of indices to construct the local piece of the object
for the given indices. As a toy example, the package may set the indices of a matrix stored in
the first process to be (1, 1), (2, 1), (1, 2), (2, 2), namely the upper 2×2 block of a matrix. Given
this set of indices, the user-provided function would need to compute these four elements of
the matrix, which would then be stored as a vector, column-wise, in the process. Once the
necessary vectors and matrices are computed, the distributed linear algebra functions allow
one to manipulate the objects by name. As we have done in the krigeProblem class, we
recommend the use of reference classes to store the various objects and functions associated
with a given methodology.

3. Timing results

We focus on computational speed for the Cholesky factorization, as this generally dominates
the computational time for Gaussian process computations. We run the code underlying
the package as a distributed C program, as R serves only as a simple wrapper that calls the
local Cholesky functions on the worker processes via the mpi.remote.exec function. We use
Hopper, a Cray system hosted at the National Energy Research Scientific Computing center
(NERSC). Each Hopper node consists of two 12-core AMD “MagnyCours” processors with 24
GB of memory. Hopper jobs have access to a dedicated Cray Gemini interconnect to obtain
low-latency and high bandwidth inter-process communication. While Hopper has 24 cores
per node, each node is divided into 4 NUMA regions each with 6 cores; in our experiments we
try running one process per node, one process per NUMA region (4 per node), or one process
per core (24 per node).

We start by considering timing as a function of the size of the problem, illustrating that our
approach greatly reduces computational time and that it allows one to do computations for
matrices too large to work with on an individual machine. We then consider the choice of h
and compare our implementation with ScaLAPACK, illustrating that our implementation is
equivalent in terms of timing. Next we explore the question of how to assign one’s available
cores: fewer processes and more cores per process or the reverse. Finally, we consider the use
of GPUs.

3.1. Timing and comparison with increasing problem size

As the matrix size n increases, the arithmetic count of computations required for Cholesky
decomposition increases as a function of n3. For small problem sizes, this increase is mitigated
by the greater efficiency in computing with larger matrices. Figure 3 shows how runtime varies
with n.

As a practical illustration, if 100 Cholesky decompositions were required for likelihood op-
timization for a problem with n = 8192, one could carry out the optimization using our

12 Parallelizing Gaussian Process Calculations in R

 0.01

 0.1

 1

 10

 100

 1000

 2048 8192 32768 131072

E
x
e
c
u
ti
o
n
 t
im

e
,
s
e
c
o
n
d
s
 (

lo
g
 s

c
a
le

)

Matrix dimension, n (log scale)

Cholesky Decomposition

6 cores
60 cores

816 cores
12480 cores
49920 cores

Figure 3: Runtimes as a function of n for Cholesky decomposition on Hopper, for a variety
of numbers of cores. For 49920 cores, we used 24 cores per process; in the other cases we
used 6 cores per process. For each data point, we use the optimal value of h, as determined
in Section 3.2.

implementation with six cores on Hopper in approximately 440 seconds. This is comparable
to using a fast threaded BLAS to do a standard Cholesky on a desktop machine. In particular
using R on a desktop Linux machine with 16 GB RAM and 8 cores linked to openBLAS or
on a Mac Mini with 8 GB RAM and 4 cores linked to the vecLib BLAS, the 100 decom-
positions would take approximately 500 and 610 seconds respectively. In contrast, by using
816 cores on Hopper, computational time is reduced to 40 seconds for 100 decompositions.
Furthermore, with 816 cores, such an optimization with n = 32768 would take approximately
950 seconds with our implementation, but neither of the desktop machines could factorize the
matrix because of memory constraints.

3.2. Choice of h and comparison to ScaLAPACK

In Figure 4 we compare the performance at different values of h. One notable feature is that
for h = 1 there is no performance improvement in increasing from P = 1 to P = 3, because
there is no parallelism. Allowing larger values of h makes a speedup possible with P = 3.
Generally, larger values of h perform best when P is small, but as P grows the value of h
should decrease to keep the block size from getting too small.

Figure 4 also compares our performance to ScaLAPACK, a standard distributed-memory
linear algebra library. Performance for ScaLAPACK (using the optimal block size) and our
algorithm (using the optimal value of h) is similar. We are thus able to get essentially the same
performance on distributed linear algebra computations issued from R with our framework as
if the programmer were working in C and calling ScaLAPACK.

Journal of Statistical Software 13

 10

 100

 10 100

E
x
e
c
u
ti
o
n
 t
im

e
,
s
e
c
o
n
d
s
 (

lo
g
 s

c
a
le

)

Number of cores (log scale)

Cholesky decomposition, n=32768

h=1
h=2
h=4
h=8

optimal h
ScaLAPACK

Figure 4: Runtimes for 32768×32768 Cholesky decomposition on Hopper with various values
of h using 6 cores per process. The last line shows ScaLAPACK as a benchmark. The optimal
value of h was chosen by trying all values between 1 and 8. The blocksize for ScaLAPACK
corresponds to the best performance using a power of 2 blocks per process.

3.3. Effect of number of cores per process

Our framework gives the user the freedom to choose how many cores to assign to each process,
up to the number of cores on a node. Whatever choice the user makes, all of the cores will
be active most of the time. When multiple cores are assigned to a single process, parallelism
between cores comes from the threaded BLAS, whereas parallelism between the processes
comes from our package. Both use similar techniques to achieve parallelism. The main
difference is in the communication. When running with many processes per node, each one
is sending many small messages to processes on other nodes, but when running with one
process per node one is more efficient in sending fewer, larger messages. As Figure 5 shows,
the number of cores per process is not very important when using a small number of cores,
where the calculation is computation-bound (up to about 480 cores). As the number of cores
increases, the calculation becomes communication-bound, and better performance is attained
with fewer processes per node (more cores per process). Note that the ideal choice of block
size is affected by the number of cores per process, since efficiently using more cores requires
larger blocks.

3.4. Using GPUs to speed up the linear algebra

There is growing use of GPUs to speed up various computations, in particular linear algebra,
with Franey, Ranjan, and Chipman (2012) exploring the use of GPUs for likelihood maxi-
mization of Gaussian process models. Our framework can be modified to run on a single GPU
or a cluster of nodes with GPUs by using CUBLAS (nVidia 2012) and MAGMA instead of

14 Parallelizing Gaussian Process Calculations in R

 1

 10

 100

 10 100 1000 10000

E
x
e
c
u
ti
o
n
 t
im

e
,
s
e
c
o
n
d
s
 (

lo
g
 s

c
a
le

)

Number of cores (log scale)

Cholesky decomposition, n=32768

1 core per process
6 cores per process

24 cores per process

Figure 5: Runtimes for 32768 × 32768 Cholesky decomposition on Hopper using 1 core, 6
cores, or 24 cores (full node) per process. For each data point, we use the optimal value of h.

 0.01

 0.1

 1

 10

 100

 1000

 2048 8192 32768 131072

E
x
e
c
u
ti
o
n
 t
im

e
,
s
e
c
o
n
d
s
 (

lo
g
 s

c
a
le

)

Matrix dimension, n (log scale)

Cholesky Decomposition

6 cores
60 cores

1 gpu
330 cores

10 gpus
816 cores

Figure 6: Runtimes as a function of n for Cholesky decomposition using 1 and 10 GPUs on
Dirac with results using Hopper for a variety of number of cores. The CPU lines correspond
to using 6 cores per process.

Journal of Statistical Software 15

BLAS and LAPACK. We implemented Cholesky decomposition and tested on the NERSC
machine Dirac, a small cluster with one NVIDIA Tesla C2050 GPU and two Intel 5530 CPUs
per node. Theoretically each GPU has the equivalent performance of about 60 cores of Hop-
per, although the interconnects are slower and so more problems are communication-bound.
Figure 6 compares the performance on 1 and 10 GPUs on Dirac to the performance on Hop-
per. One GPU is roughly the same speed as 60 cores on Hopper (matching the theoretical
result), whereas 10 GPUs gives roughly the same speed as 330 cores on Hopper (showing the
slow-down due to communication). When running on Dirac, the computation is entirely done
on the GPUs; CPUs are only used for transferring data between nodes. In principle one could
try to divide the computation between the CPU and GPU, but, since the theoretical peak of
the CPUs on each node is only 15% that of the GPU, this would only yield slight performance
improvements.

4. Astrophysics example

4.1. Background

Our example data set is the public spectrophotometric time series of the Type Ia supernova
SN 2011fe (Pereira et al. 2013), obtained and reduced by the Nearby Supernova Factory
(Aldering et al. 2002). The time series itself is a sequence of spectra, each consisting of flux
and flux error in units of erg s−1 cm−2 Å−1 tabulated as a function of wavelength in Å.
Each spectrum was obtained on a different night. There are 25 unique spectra, each of which
contains 2691 flux (and flux error) measurements. The total size of the data set is thus 67,275
flux values. The time coverage is not uniform, but the wavelength grid is regularly spaced and
the same from night to night. The flux values themselves are calibrated so that differences
in the brightness of the supernova from night to night and wavelength to wavelength are
physically meaningful. The data are shown in Figure 7.

We are interested in obtaining a smoothed prediction of the flux of SN 2011fe as a function
of time and wavelength along with an estimate of the prediction error. The spectrum of a
supernova contains broad absorption and emission features whose appearance is the result
of physical processes and conditions in the expanding stellar ejecta. The widths, depths,
and heights of such features change with time as the supernova expands and cools. The
wavelengths of absorption feature minima are examples of physically interesting quantities to
extract from spectral time series as a function of time. These translate to a characteristic
ejecta velocity that provides an estimate of the kinetic energy of the supernova explosion,
something of great interest to those that study exploding stars.

To demonstrate our algorithms and software on a real data set, we extract the velocity of
the Si II (singly ionized silicon) absorption minimum typically found near 6150 Å in Type Ia
supernovae. This is done by finding the minimum absorption in the feature using the smoothed
representation of the supernova spectrum. Realizations of the spectrum, sampled from the
posterior Gaussian process, are used to produce Monte Carlo error estimates on the position
of the absorption minimum. Rather than measuring the position of each minimum only
at points where the data have been obtained (represented by the solid dots in Figure 7),
this procedure yields a smooth estimate of the absorption minimum as a function of time
interpolated between observations, while also taking observation errors into account.

16 Parallelizing Gaussian Process Calculations in R

Wavelength (log scale)

D
ay

−
15

−
10

−
5

0
5

10
15

20
25

4000 5000 6000 7000 8000 9000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7: Flux observations for the Type la supernova. Offset on the y-axis corresponds to
time of observation in days. The scale for the flux measurements is not indicated due to the
offset, but these measurements range from−0.003 to 1. Each spectrum contains measurements
corresponding to 2691 wavelengths (Å), shown on the x-axis. Wavelengths 5950 Å and 6300
Å are indicated by dotted vertical lines; this is the range over which we make predictions.
The empirical minimum within this range for each spectrum is indicated with a solid dot.

4.2. Statistical model

We model the flux measurements Y1, . . . , Y67275 as being equal to a GP realization plus two
error components: random effects for each phase (time point) and independent errors due to
photon noise. We denote these three components by

Yi = Z(ti, wi) + αti + εi,

where ti represents the time corresponding to Yi and wi the log wavelength, αti is the random
effect corresponding to time ti, and εi is measurement error for the ith observation. The
models for these components are

Z ∼ GP (µ(·;κ, λ), σ2K(·, ·; ρp, ρw))

α1, . . . , α25
iid∼ N(0, τ2)

εi ∼ N(0, vi), ε1, . . . , ε67275 mutually independent.

Z has mean function µ, a function of time t only, derived from a standard template Type Ia
supernova spectral time series (Hsiao et al. 2007), with κ and λ controlling scaling in magni-
tude and time. We take the correlation function, K, to be a product of two Matérn correlation
functions, one for both the phase and log wavelength dimensions, each with smoothness pa-
rameter ν = 2. Note that the flux error variances vi are known, leaving us with six parameters
to be estimated.

Journal of Statistical Software 17

4.3. R code

For this problem we chose P = 465, requesting 466 processes (including one for the master)
with 6 cores per process on Hopper. In the R code, the first steps are to load the package,
set up the inputs to the mean and covariance functions, and initialize the kriging problem
object, called prob. Note that in this case the mean and covariance functions are provided
by the package, but in general these would need to be provided by the user.

R> library("bigGP")

R> nProc <- 465

R> n <- nrow(SN2011fe)

R> m <- nrow(SN2011fe_newdata)

R> nu <- 2

R> inputs <- c(as.list(SN2011fe), as.list(SN2011fe_newdata), nu = nu)

R> prob <- krigeProblem$new("prob", numProcesses = nProc, h_n = NULL,

+ h_m = NULL, n = n, m = m, meanFunction = SN2011fe_meanfunc,

+ predMeanFunction = SN2011fe_predmeanfunc,

+ covFunction = SN2011fe_covfunc,

+ crossCovFunction = SN2011fe_crosscovfunc,

+ predCovFunction = SN2011fe_predcovfunc, inputs = inputs,

+ params = SN2011fe_initialParams, data = SN2011fe$flux,

+ packages = "fields", parallelRNGpkg = "rlecuyer")

We then maximize the log likelihood, followed by making the kriging predictions and gener-
ating a set of 1000 realizations from the conditional distribution of Z given the observations
and fixing the parameters at the maximum likelihood estimates. The predictions and realiza-
tions are over a grid, with days ranging from -15 to 24 in increments of 0.5 and wavelengths
ranging from 5950 to 6300 in increments of 0.5. The number of prediction points is therefore
79× 701 = 55379.

R> prob$optimizeLogDens(method = "L-BFGS-B", verbose = TRUE,

+ lower = rep(.Machine$double.eps, length(SN2011fe_initialParams)),

+ control = list(parscale = SN2011fe_initialParams))

R> pred <- prob$predict(ret = TRUE, se.fit = TRUE, verbose = TRUE)

R> realiz <- prob$simulateRealizations(r = 1000, post = TRUE, verbose = TRUE)

4.4. Results

The MLEs are σ̂2 = 0.0071, ρ̂p = 2.33, ρ̂w = 0.0089, τ̂2 = 2.6 × 10−5, and κ̂ = 0.33.
Figure 8 shows the posterior mean and pointwise 95% posterior credible intervals for the
wavelength corresponding to the minimum flux for each time point. These are calculated
from the 1000 sampled posterior realizations of Z. For each realization, we calculate the
minimizing wavelength for each time point. To translate each wavelength value to an ejecta
velocity via the Doppler shift formula, we calculate v = c(λR/w − 1) where λR = 6355 is the
rest wavelength of an important silicon ion transition and c is speed of light, 3 × 108m/s.
The posterior mean and pointwise 95% posterior credible intervals for the ejecta velocities are
shown in Figure 8 (b).

18 Parallelizing Gaussian Process Calculations in R

−10 0 10 20

60
50

61
00

61
50

62
00

(a)

Day

W
av

el
en

gt
h

−10 0 10 20

8.
0e

+
06

1.
2e

+
07

1.
6e

+
07

(b)

Day

V
el

oc
ity

Figure 8: Posterior means (solid black lines) and pointwise 95% posterior credible intervals
(dotted black lines) for the wavelength (Å) corresponding to the minimum flux (a) and the
corresponding ejecta velocity (m/s) (b). The vertical gray dotted lines indicate observation
times.

5. Discussion

Our software allows one to carry out standard Gaussian process calculations, such as likelihood
maximization, prediction, and simulation of realizations, off the shelf, as illustrated in the
astrophysics example, in situations in which calculations using threaded linear algebra on
a single computer are not feasible because the calculations take too long or use too much
memory. The software enables a user to implement standard models and related models
without approximations. One limitation of our implementation is that we do not do any
pivoting, so Cholesky factorization of matrices that are not numerically positive definite fails.
This occurred in the example when simulating realizations on fine grids of wavelength and
phase.

Of course with large datasets, one has the necessary statistical information to fit more com-
plicated models, including hierarchical models, than the standard kriging methodology we
implement. The package is designed to be extensible, providing a core set of distributed
linear algebra functions common to Gaussian process calculations as an API usable from R
without any knowledge of C or MPI. This allows others to implement other Gaussian pro-
cess methodologies that rely on these functions. These might include Bayesian methods for
nonstationary covariance models and spatio-temporal models among others. For example,
MCMC updating steps might be done from the master process, with the linear algebra calcu-
lations done using the API. As can be seen from our timing results, a Cholesky decomposition
for 32, 768 observations can be done in several seconds with a sufficient number of processors
(a speed-up of 2–3 orders of magnitude relative to a single computational node), potentially
enabling tens of thousands of MCMC updates. Or for a separable space-time model, the
spatial and temporal covariance matrices could be manipulated separately using the package.
One might also consider handling even larger datasets (e.g., millions of observations) by use
of the core functions within the context of computationally-efficient methods such as low-rank
approximations.

Journal of Statistical Software 19

One useful extension of our approach would be to sparse matrices. Sparse matrices are at the
core of computationally-efficient Markov random field spatial models (Banerjee et al. 2003;
Rue, Martino, and Chopin 2009; Lindgren, Rue, and Lindström 2011) and covariance tapering
approaches (Furrer et al. 2006; Kaufman et al. 2008; Sang and Huang 2012), and implement-
ing a distributed sparse Cholesky decomposition could allow calculations for problems with
hundreds of thousands or millions of locations. To get a feel for what is possible, we bench-
marked the PaStiX package (Hénon, Ramet, and Roman 2000) on Hopper on sparse matrices
corresponding to a two-dimensional grid with five nonzeros per row. With one million loca-
tions, a Cholesky decomposition could be done in about 5 seconds using 96 cores (4 nodes) of
Hopper; for 16 million locations, it took about 25 seconds using 384 cores (16 nodes). Using
more than this number of cores did not significantly reduce the running time. We also note
that with these improvements in speed for the Cholesky decomposition, computation of the
covariance matrix itself may become the rate-limiting step in a Gaussian process calculation.
Our current implementation takes a user-specified R function for constructing the covariance
matrix and therefore does not exploit threading because R itself is not threaded. In this case,
specifying more than one process per node would implicitly thread the covariance matrix con-
struction, but additional work to enable threaded calculation of the covariance matrix may
be worthwhile.

Acknowledgments

This work is supported by the Director, Office of Science, Office of Advanced Scientific Com-
puting Research, of the U.S. Department of Energy under Contract No. AC02-05CH11231.
This research used resources of the National Energy Research Scientific Computing Center.

References

Aldering G, Adam G, Antilogus P, Astier P, Bacon R, Bongard S, Bonnaud C, Copin Y,
Hardin D, Henault F, Howell DA, Lemonnier JP, Levy JM, Loken SC, Nugent PE, Pain R,
Pecontal A, Pecontal E, Perlmutter S, Quimby RM, Schahmaneche K, Smadja G, Wood-
Vasey WM (2002). “Overview of the Nearby Supernova Factory.” In JA Tyson, S Wolff
(eds.), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol-
ume 4836 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,
pp. 61–72.

AMD (2013). Core Math Library (ACML). URL http://developer.amd.com/

tools-and-sdks/cpu-development/amd-core-math-library-acml/.

Anderson E (1999). LAPACK Users’ Guide, volume 9. Society for Industrial and Applied
Mathematics.

Anitescu M, Chen J, Stein M (2014). “An Inversion-Free Estimating Equation Approach for
Gaussian Process Models.” Technical Report ANL/MCS-P5078-0214, Argonne National
Laboratory.

Anitescu M, Chen J, Wang L (2012). “A Matrix-Free Approach for Solving the Parametric

http://developer.amd.com/tools-and-sdks/cpu-development/amd-core-math-library-acml/
http://developer.amd.com/tools-and-sdks/cpu-development/amd-core-math-library-acml/

20 Parallelizing Gaussian Process Calculations in R

Gaussian Process Maximum Likelihood Problem.” SIAM Journal on Scientific Computing,
34(1), A240–A262.

Ballard G, Demmel J, Holtz O, Schwartz O (2011). “Minimizing Communication in Numerical
Linear Algebra.” SIAM Journal on Matrix Analysis and Applications, 32(3), 866–901.

Banerjee S, Gelfand AE, Finley AO, Sang H (2008). “Gaussian Predictive Process Models for
Large Spatial Data Sets.” Journal of the Royal Statistical Society B, 70(4), 825–848.

Banerjee S, Gelfand AE, Sirmans CF (2003). “Directional Rates of Change Under Spatial
Process Models.” Journal of the American Statistical Association, 98(464), 946–954.

Blackford LS, Choi J, Cleary A, D’Azevedo E, Demmel J, Dhillon I, Dongarra J, Hammarling
S, Henry G, Petitet A, others (1987). ScaLAPACK Users’ Guide, volume 4. Society for
Industrial and Applied Mathematics.

Chapman B, Jost G, Pas RVD (2008). Using OpenMP: Portable Shared Memory Parallel
Programming, volume 10. MIT Press.

Cressie N, Johannesson G (2008). “Fixed Rank Kriging for Very Large Spatial Data Sets.”
Journal of the Royal Statistical Society B, 70(1), 209–226.

Dancik GM, Dorman KS (2008). “mlegp: Statistical Analysis for Computer Models of Bio-
logical Systems Using R.” Bioinformatics, 24(17), 1966–1967.

Dongarra JJ, Croz JD, Hammarling S, Duff IS (1990). “A Set of Level 3 Basic Linear Algebra
Subprograms.” ACM Transactions on Mathematical Software, 16(1), 1–17.

Eddelbuettel D (2014). “CRAN Task View: High-Performance and Parallel Com-
puting with R.” Version 2014-12-05, URL http://CRAN.R-project.org/view=

HighPerformanceComputing.

Franey M, Ranjan P, Chipman H (2012). “A Short Note on Gaussian Process Modeling
for Large Datasets Using Graphics Processing Units.” http://arXiv.org/abs/arXiv:

1203.1269/.

Furrer R, Genton MG, Nychka D (2006). “Covariance Tapering for Interpolation of Large
Spatial Datasets.” Journal of Computational and Graphical Statistics, 15, 502–523.

Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM, Sahay V, Kambadur
P, Barrett B, Lumsdaine A, others (2004). “Open MPI: Goals, Concept, and Design of a
Next Generation MPI Implementation.” In Recent Advances in Parallel Virtual Machine
and Message Passing Interface, pp. 97–104. Springer-Verlag.

Georganas E, González-Domı́nguez J, Solomonik E, Zheng Y, no JT, Yelick K (2012). “Com-
munication Avoiding and Overlapping for Numerical Linear Algebra.” In Proceedings of
the International Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’12, pp. 100:1–100:11. IEEE Computer Society Press, Los Alamitos.

Gramacy RB (2014). laGP: Local Approximate Gaussian Process Regression. R package
version 1.1-1, URL http://CRAN.R-project.org/package=laGP.

http://CRAN.R-project.org/view=HighPerformanceComputing
http://CRAN.R-project.org/view=HighPerformanceComputing
http://arXiv.org/abs/arXiv:1203.1269/
http://arXiv.org/abs/arXiv:1203.1269/
http://CRAN.R-project.org/package=laGP

Journal of Statistical Software 21

Gramacy RB, Lee HKH (2008). “Bayesian Treed Gaussian Process Models with an Application
to Computer Modeling.” Journal of the American Statistical Association, 103(483), 1119–
1130.

Gropp WD, Lusk EL, Skjellum A (1999). Using MPI: Portable Parallel Programming with
the Message-Passing Interface, volume 1. MIT Press.

Hénon P, Ramet P, Roman J (2000). “PaStiX: A Parallel Sparse Direct Solver Based on a
Static Scheduling for Mixed 1D/2D Block Distributions.” In Proceedings of the 15 IPDPS
2000 Workshops on Parallel and Distributed Processing, IPDPS ’00, pp. 519–527. Springer-
Verlag, London.

Hsiao EY, Conley A, Howell DA, Sullivan M, Pritchet CJ, Carlberg RG, Nugent PE, Phillips
MM (2007). “K-Corrections and Spectral Templates of Type Ia Supernovae.” The Astro-
physical Journal, 663(2), 1187.

Intel (2013). Intel Math Kernel Library – Documentation. URL http://software.intel.

com/en-us/articles/intel-math-kernel-library-documentation.

Kalaitzis A, Gao A, Honkela P, Lawrence ND (2014). gptk: Gaussian Processes Tool-Kit. R
package version 1.08, URL http://CRAN.R-project.org/package=gptk.

Kammann EE, Wand MP (2003). “Geoadditive Models.” Journal of the Royal Statistical
Society C, 52, 1–18.

Kaufman C, Schervish M, Nychka D (2008). “Covariance Tapering for Likelihood-Based
Estimation in Large Spatial Datasets.” Journal of the American Statistical Association,
103, 1556–1569.

Kennedy MC, O’Hagan A (2001). “Bayesian Calibration of Computer Models.” Journal of
the Royal Statistical Society B, 63, 425–464.

Lindgren F, Rue H, Lindström J (2011). “An Explicit Link between Gaussian Fields and
Gaussian Markov Random Fields: The Stochastic Partial Differential Equation Approach.”
Journal of the Royal Statistical Society B, 73, 423–498.

MacDonald B, Ranjan P, Chipman H (2013). “GPfit: An R Package for Gaussian Process
Model Fitting Using a New Optimization Algorithm.” URL http://arXiv.org/abs/1305.

0759/.

nVidia (2012). CUBLAS Library User Guide. nVidia, v5.0 edition. URL http://docs.

nvidia.com/cublas/.

Ostrouchov G, Chen WC, Schmidt D, Patel P (2012). Programming with Big Data in R. URL
http://r-pbd.org/.

Pereira R, Thomas RC, Aldering G, Antilogus P, Baltay C, Benitez-Herrera S, Bongard S,
Buton C, Canto A, Cellier-Holzem F, Chen J, Childress M, Chotard N, Copin Y, Fakhouri
HK, Fink M, Fouchez D, Gangler E, Guy J, Hillebrandt W, Hsiao EY, Kerschhaggl M,
Kowalski M, Kromer M, Nordin J, Nugent P, Paech K, Pain R, P écontal E, Perlmutter
S, Rabinowitz D, Rigault M, Runge K, Saunders C, Smadja G, Tao C, Taubenberger S,

http://software.intel.com/en-us/articles/intel-math-kernel-library-documentation
http://software.intel.com/en-us/articles/intel-math-kernel-library-documentation
http://CRAN.R-project.org/package=gptk
http://arXiv.org/abs/1305.0759/
http://arXiv.org/abs/1305.0759/
http://docs.nvidia.com/cublas/
http://docs.nvidia.com/cublas/
http://r-pbd.org/

22 Parallelizing Gaussian Process Calculations in R

Tilquin A, Wu C (2013). “Spectrophotometric Time Series of SN 2011fe from the Nearby
Supernova Factory.” URL http://arXiv.org/abs/arXiv:1302.1292/.

Rasmussen CE, Williams CKI (2006). Gaussian Processes for Machine Learning. MIT Press,
Cambridge.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Rue H, Martino S, Chopin N (2009). “Approximate Bayesian Inference for Latent Gaus-
sian Models by Using Integrated Nested Laplace Approximations.” Journal of the Royal
Statistical Society B, 71(2), 319–392.

Sang H, Huang JZ (2012). “A Full Scale Approximation of Covariance Functions for Large
Spatial Data Sets.” Journal of the Royal Statistical Society B, 74, 111–132.

Stein ML, Chi Z, Welty LJ (2004). “Approximating Likelihoods for Large Spatial Data Sets.”
Journal of the Royal Statistical Society B, 66(2), 275–296.

Stone JE, Gohara D, Shi G (2010). “OpenCL: A parallel Programming Standard for Hetero-
geneous Computing Systems.” Computing in Science & Engineering, 12(3), 66.

Tomov S, Nath R, Du P, Dongarra J (2011). “MAGMA Users’ Guide.” ICL, UTK.

Yoginath SB, Samatova NF, Bauer D, Kora G, Fann G, Geist A (2005). “RScaLAPACK: High-
Performance Parallel Statistical Computing with R and ScaLAPACK.” In ISCA PDCS, pp.
61–67.

Yu H (2002). “Rmpi: Parallel Statistical Computing in R.” R News, 2(2), 10–14. URL
http://CRAN.R-project.org/doc/Rnews/.

Zhang X (2013). OpenBLAS: An Optimized BLAS Library Based on GotoBLAS2. URL
https://github.com/xianyi/OpenBLAS/.

Affiliation:

Christopher J. Paciorek
Cari G. Kaufman
Department of Statistics
University of California, Berkeley
Berkeley, California, United States of America
E-mail: paciorek@alumni.cmu.edu, cgk@stat.berkeley.edu
URL: http://www.stat.berkeley.edu/~paciorek/, http://www.stat.berkeley.edu/~cgk/

Benjamin Lipshitz
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California, United States of America
E-mail: benjamin.lipshitz@gmail.com

http://arXiv.org/abs/arXiv:1302.1292/
http://www.R-project.org/
http://CRAN.R-project.org/doc/Rnews/
https://github.com/xianyi/OpenBLAS/
mailto:paciorek@alumni.cmu.edu
mailto:cgk@stat.berkeley.edu
http://www.stat.berkeley.edu/~paciorek/
http://www.stat.berkeley.edu/~cgk/
mailto:benjamin.lipshitz@gmail.com

Journal of Statistical Software 23

Wei Zhuo
College of Computing
Georgia Institute of Technology
Atlanta, Georgia, United States of America
E-mail: wzhuo3@cc.gatech.edu

Prabhat
Computational Research Division
Lawrence Berkeley National Laboratory
Berkeley, California, United States of America
E-mail: prabhat@lbl.gov

Rollin C. Thomas
Computational Cosmology Center
Lawrence Berkeley National Laboratory
Berkeley, California, United States of America
E-mail: rcthomas@lbl.gov

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 63, Issue 10 Submitted: 2013-06-03
January 2015 Accepted: 2014-09-29

mailto:wzhuo3@cc.gatech.edu
mailto:prabhat@lbl.gov
mailto:rcthomas@lbl.gov
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Parallel algorithm and software implementation
	Distributed linear algebra calculations
	Our algorithm
	Memory use
	Advantages of our approach

	The bigGP R package
	Overview
	API
	Kriging implementation
	Using the API

	Timing results
	Timing and comparison with increasing problem size
	Choice of h and comparison to ScaLAPACK
	Effect of number of cores per process
	Using GPUs to speed up the linear algebra

	Astrophysics example
	Background
	Statistical model
	R code
	Results

	Discussion

