3,679 research outputs found

    Hard X-ray emission and 44^{44}Ti line features of Tycho Supernova Remnant

    Full text link
    A deep hard X-ray survey of the INTEGRAL satellite first detected the non-thermal emission up to 90 keV in the Tycho supernova (SN) remnant. Its 3 -- 100 keV spectrum is fitted with a thermal bremsstrahlung of kT∼0.81±0.45kT\sim 0.81\pm 0.45 keV plus a power-law model of Γ∼3.01±0.16\Gamma \sim 3.01\pm 0.16. Based on the diffusive shock acceleration theory, this non-thermal emission, together with radio measurements, implies that Tycho remnant may not accelerate protons up to >>PeV but hundreds TeV. Only heavier nuclei may be accelerated to the cosmic ray spectral "knee". In addition, we search for soft gamma-ray lines at 67.9 and 78.4 keV coming from the decay of radioactive 44^{44}Ti in Tycho remnant by INTEGRAL. A bump feature in the 60-90 keV energy band, potentially associated with the 44^{44}Ti line emission, is found with a marginal significance level of ∼\sim 2.6 σ\sigma. The corresponding 3 σ\sigma upper limit on the 44^{44}Ti line flux amounts to 1.5 ×\times 10−5^{-5} ph cm−2^{-2} s−1^{-1}. Implications on the progenitor of Tycho SN, considered to be the prototype of type Ia SN, are discussed.Comment: 15 pages, 4 figures, accepted for publication in Ap

    Hard X-ray emissions from Cassiopeia A observed by INTEGRAL

    Full text link
    Cassiopeia A (Cas A) as the nearby young remnant of a core-collapse supernova is the best candidate for astrophysical studies in supernova explosion and its environment. We studied hard X-ray emissions from Cas A using the ten-year data of INTEGRAL observations, and first detected non-thermal continuum emission from the source up to 220 keV. The 44^{44}Ti line emissions at 68 and 78 keV are confirmed by our observations with a mean flux of ∼(2.2±0.4)×10−5\sim (2.2\pm 0.4)\times 10^{-5} ph cm−2^{-2} s−1^{-1}, corresponding to a 44^{44}Ti yield in Cas A of (1.3±0.4)×10−4(1.3\pm 0.4)\times 10^{-4} \ms. The continuum emission from 3 -- 500 keV can be fitted with a thermal bremsstrahlung of kT∼0.79±0.08kT\sim 0.79\pm 0.08 keV plus a power-law model of Γ∼3.13±0.03\Gamma \sim 3.13\pm 0.03. The non-thermal emission from Cas A is well fitted with a power-law model without a cutoff up to 220 keV. This radiation characteristic is inconsistent with the diffusive shock acceleration models with the remnant shock velocity of only 5000km s−1^{-1}. The central compact object in Cas A cannot contribute to the emission above 80 keV significantly. Some possible physical origins of the non-thermal emission above 80 keV from the remnant shock are discussed. We deduce that the asymmetrical supernova explosion scenario of Cas A is a promising scenario to produce high energy synchrotron radiation photons, where a part of ejecta with the velocity of ∼0.1c\sim 0.1c and opening angle of ∼10∘\sim10^\circ can account for the 100-keV emission, consistent with the "jet" observed in Cas A.Comment: 20 pages, 6 figures, 2 tables; accepted for the publication in Ap

    2D+3D Indoor Scene Understanding from a Single Monocular Image

    Get PDF
    Scene understanding, as a broad field encompassing many subtopics, has gained great interest in recent years. Among these subtopics, indoor scene understanding, having its own specific attributes and challenges compared to outdoor scene under- standing, has drawn a lot of attention. It has potential applications in a wide variety of domains, such as robotic navigation, object grasping for personal robotics, augmented reality, etc. To our knowledge, existing research for indoor scenes typically makes use of depth sensors, such as Kinect, that is however not always available. In this thesis, we focused on addressing the indoor scene understanding tasks in a general case, where only a monocular color image of the scene is available. Specifically, we first studied the problem of estimating a detailed depth map from a monocular image. Then, benefiting from deep-learning-based depth estimation, we tackled the higher-level tasks of 3D box proposal generation, and scene parsing with instance segmentation, semantic labeling and support relationship inference from a monocular image. Our research on indoor scene understanding provides a comprehensive scene interpretation at various perspectives and scales. For monocular image depth estimation, previous approaches are limited in that they only reason about depth locally on a single scale, and do not utilize the important information of geometric scene structures. Here, we developed a novel graphical model, which reasons about detailed depth while leveraging geometric scene structures at multiple scales. For 3D box proposals, to our best knowledge, our approach constitutes the first attempt to reason about class-independent 3D box proposals from a single monocular image. To this end, we developed a novel integrated, differentiable framework that estimates depth, extracts a volumetric scene representation and generates 3D proposals. At the core of this framework lies a novel residual, differentiable truncated signed distance function module, which is able to handle the relatively low accuracy of the predicted depth map. For scene parsing, we tackled its three subtasks of instance segmentation, se- mantic labeling, and the support relationship inference on instances. Existing work typically reasons about these individual subtasks independently. Here, we leverage the fact that they bear strong connections, which can facilitate addressing these sub- tasks if modeled properly. To this end, we developed an integrated graphical model that reasons about the mutual relationships of the above subtasks. In summary, in this thesis, we introduced novel and effective methodologies for each of three indoor scene understanding tasks, i.e., depth estimation, 3D box proposal generation, and scene parsing, and exploited the dependencies on depth estimates of the latter two tasks. Evaluation on several benchmark datasets demonstrated the effectiveness of our algorithms and the benefits of utilizing depth estimates for higher-level tasks

    A unified gas kinetic scheme for transport and collision effects in plasma

    Full text link
    In this study, the Vlasov-Poisson equation with or without collision term for plasma is solved by the unified gas kinetic scheme (UGKS). The Vlasov equation is a differential equation describing time evolution of the distribution function of plasma consisting of charged particles with long-range interaction. The distribution function is discretized in discrete particle velocity space. After the Vlasov equation is integrated in finite volumes of physical space, the numerical flux across a cell interface and source term for particle acceleration are computed to update the distribution function at next time step. The flux is decided by Riemann problem and variation of distribution function in discrete particle velocity space is evaluated with central difference method. A electron-ion collision model is introduced in the Vlasov equation. This finite volume method for the UGKS couples the free transport and long-range interaction between particles. The electric field induced by charged particles is controlled by the Poisson's equation. In this paper, the Poisson's equation is solved using the Green's function for two dimensional plasma system subjected to the symmetry or periodic boundary conditions. Two numerical tests of the linear Landau damping and the Gaussian beam are carried out to validate the proposed method. The linear electron plasma wave damping is simulated based on electron-ion collision operator. Compared with previous methods, it is shown that the current method is able to obtain accurate results of the Vlasov-Poisson equation with a time step much larger than the particle collision time. Highly non-equilibrium and rarefied plasma flows, such as electron flows driven by electromagnetic field, can be simulated easily.Comment: 33 pages, 13 figure

    Secondary-electron radiation accompanying hadronic GeV-TeV gamma-rays from supernova remnants

    Full text link
    The synchrotron radiation from secondary electrons and positrons (SEPs) generated by hadronic interactions in the shock of supernova remnant (SNR) could be a distinct evidence of cosmic ray (CR) production in SNR shocks. Here we provide a method where the observed gamma-ray flux from SNRs, created by pion decays, is directly used to derive the SEP distribution and hence the synchrotron spectrum. We apply the method to three gamma-ray bright SNRs. In the young SNR RX J1713.7-3946, if the observed GeV-TeV gamma-rays are of hadronic origin and the magnetic field in the SNR shock is B≳0.5B\gtrsim 0.5mG, the SEPs may produce a spectral bump at 10−5−10−210^{-5}-10^{-2}eV, exceeding the predicted synchrotron component of the leptonic model, and a soft spectral tail at ≳100\gtrsim 100keV, distinct from the hard spectral slope in the leptonic model. In the middle-aged SNRs IC443 and W44, if the observed gamma-rays are of hadronic origin, the SEP synchrotron radiation with B∼400−500μB\sim 400 - 500 \muG can well account for the observed radio flux and spectral slopes, supporting the hadronic origin of gamma-rays. Future microwave to far-infrared and hard X-ray (>100keV) observations are encouraged to constraining the SEP radiation and the gamma-ray origin in SNRs.Comment: 9 pages, 5 figures and 1 table, MNRAS accepte

    Entanglement concentration for unknown atomic entangled states via entanglement swapping

    Full text link
    An entanglement concentration scheme for unknown atomic entanglement states is proposed via entanglement swapping in cavity QED. Because the interaction used here is a large-detuned one between two driven atoms and a quantized cavity mode, the effects of the cavity decay and thermal field have been eliminated. These advantages can warrant the experimental feasibility of the current scheme.Comment: 4 page
    • …
    corecore