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Abstract

Scene understanding, as a broad field encompassing many subtopics, has gained
great interest in recent years. Among these subtopics, indoor scene understanding,
having its own specific attributes and challenges compared to outdoor scene under-
standing, has drawn a lot of attention. It has potential applications in a wide variety
of domains, such as robotic navigation, object grasping for personal robotics, aug-
mented reality, etc. To our knowledge, existing research for indoor scenes typically
makes use of depth sensors, such as Kinect, that is however not always available.

In this thesis, we focused on addressing the indoor scene understanding tasks
in a general case, where only a monocular color image of the scene is available.
Specifically, we first studied the problem of estimating a detailed depth map from
a monocular image. Then, benefiting from deep-learning-based depth estimation,
we tackled the higher-level tasks of 3D box proposal generation, and scene parsing
with instance segmentation, semantic labeling and support relationship inference
from a monocular image. Our research on indoor scene understanding provides a
comprehensive scene interpretation at various perspectives and scales.

For monocular image depth estimation, previous approaches are limited in that
they only reason about depth locally on a single scale, and do not utilize the impor-
tant information of geometric scene structures. Here, we developed a novel graphical
model, which reasons about detailed depth while leveraging geometric scene struc-
tures at multiple scales.

For 3D box proposals, to our best knowledge, our approach constitutes the first
attempt to reason about class-independent 3D box proposals from a single monoc-
ular image. To this end, we developed a novel integrated, differentiable framework
that estimates depth, extracts a volumetric scene representation and generates 3D
proposals. At the core of this framework lies a novel residual, differentiable trun-
cated signed distance function module, which is able to handle the relatively low
accuracy of the predicted depth map.

For scene parsing, we tackled its three subtasks of instance segmentation, se-
mantic labeling, and the support relationship inference on instances. Existing work
typically reasons about these individual subtasks independently. Here, we leverage
the fact that they bear strong connections, which can facilitate addressing these sub-
tasks if modeled properly. To this end, we developed an integrated graphical model
that reasons about the mutual relationships of the above subtasks.

In summary, in this thesis, we introduced novel and effective methodologies for
each of three indoor scene understanding tasks, i.e., depth estimation, 3D box pro-
posal generation, and scene parsing, and exploited the dependencies on depth es-
timates of the latter two tasks. Evaluation on several benchmark datasets demon-
strated the effectiveness of our algorithms and the benefits of utilizing depth esti-
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Chapter 1

Introduction

1.1 Motivation

Everyday, as human beings, we move across various indoor scenes, e.g., living room,
office, library and conference room, etc. We can easily perceive things in the room,
reason about their relationships with ourselves and other surrounding objects, and
interact with them. However, this remains a challenging task for a computer or a
robot. Therefore, indoor scene understanding has gained great interest in decades.
The ultimate goal of scene understanding is to facilitate a computer/robot to rec-
ognize categories of instances or objects, perceive their boundaries, and understand
how these instances or objects are placed relative to each other. This information is
extremely useful for grasping objects and navigation of personal robots, augmented
reality, and, for outdoor scenes, automatic driving.

Indoor scene understanding, as a subcategory in the broad scene understand-
ing field, has its own specific attributes and challenges. In contrast to outdoor
scene images, indoor scene images mostly abide by the Manhattan world assump-
tion [Coughlan and Yuille, 1999], such as the example in Figure 1.1, which assumes
that the room is aligned with the three dominant and orthogonal directions, defined
by the vanishing points. Based on this observation, previous work attempted to
simplify the representation of indoor scenes by surface planes or 3D object boxes
aligned to the three major directions [Hoiem et al., 2007a; Lee et al., 2009; Silberman
et al., 2012a; Guo and Hoiem, 2013; Zhuo et al., 2015; Song and Xiao, 2016], or in
some works with more strict constraints by a single box to represent a room [Hedau
et al., 2009; Gupta et al., 2010a; Hedau et al., 2010; Schwing et al., 2013; Zhao and
Zhu, 2013; Mallya and Lazebnik, 2015; Dasgupta et al., 2016; Ren and Sudderth,
2016]. Even though room scenes in reality usually bear more complex structures,
the above approaches achieved promising performance by efficiently simplifying the
problem. Beyond Manhattan world assumption, some works explored more flexible
representations [Bansal et al., 2016; Eigen et al., 2014], with room layout embedded
intrinsically. Despite the above attributes, the task of indoor scene understanding
still suffers from great challenges: first, indoor scenes are usually cluttered and bear
occlusions which makes it extremely difficult to infer the spatial layout and amodal
shapes of objects; second, objects and instances of indoor scene cover a huge number
of categories, and come in irregular shapes and sometimes very small sizes, which

1
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Figure 1.1: Indoor scene image: this example demonstrates the specific attributes of
indoor scenes: a) The indoor scene is usually aligned with the three dominant and
orthogonal directions; b) Most of its surface planes follow the three major directions

of the scene.

(a) (b) (c) (d)

Figure 1.2: Difficult samples of indoor scene: these scenes are difficult to parse
due to heavy occlusion (e,g. all the above examples), diverse object categories (e.g.,
example (b) ) and indistinguishably appearance on permanent structures (e.g., the

left and central wall of example (d).).

adds complexity to recognizing them; third, due to the imperfect illumination, in-
door scenes usually bear indistinguishable geometrical boundaries along permanent
structures, e.g., vertical walls of different orientations, especially when they have sim-
ilar local appearances. For example, it is challenging to distinguish wall and ceiling
when they have homogeneous color, which frequently happens for indoor scenes.
Some difficult examples are shown in Figure 1.2. Because of the above mentioned
intrinsic features and challenges of indoor scenes understanding, much research has
been focusing on this task. In recent years, indoor scene understanding has achieved
great success [Silberman et al., 2012a; Lin et al., 2013; Gupta et al., 2014a; Long et al.,
2015; Gupta et al., 2015; Song et al., 2015; Song and Xiao, 2016]. However, to our best
knowledge, most of these works made use of information from depth sensors, e.g.,
Kinect or LiDAR, to facilitate their specific task. Unfortunately, such sensors are not
always available, or cheap enough to acquire. In this thesis, we dedicate our efforts to
making indoor scene understanding work in the general case where only monocular
color images are available.
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Figure 1.3: Diagram overview of our methodology in this thesis. From a single
monocular color image, we tackled the following scene understanding tasks: a) We
estimate a detailed depth map by leveraging scene structures on multiple scales in-
dependent of deep learning; b) Based on depth estimation using a deep convolution
neural network (DCNN), we generate 3D box proposals by our residual, differen-
tiable convolution neural network (CNN) acting on a volumetric representation of the
scene; c) Based on depth estimation, we jointly reason about instance segmentation,
semantic labels, and the support relationship of pair of segments in a hierarchical

segmentation by our integrated CRF model.

1.2 Contributions

In this thesis, we tackle the problem of extracting 2D and 3D cues of indoor scene
from a single monocular image. In particular, we focus on three fundamental tasks
of indoor scene understanding from monocular images: depth estimation; 3D object
box proposal generation; and scene parsing with semantic labels, instances and their
support relationships. We diagram the framework of methodology in this thesis in
Figure 1.3. First, to respect the fact that depth information provides complemen-
tary information to color images for high level recognition tasks, we devoted efforts
into estimating depth maps from monocular images and introduced a depth estima-
tion model which leverages high-level scene structures with local ones [Zhuo et al.,
2015]. Second, based on predicted depth, we are able to generate 3D box proposals
from a monocular image. In particular, we proposed a differentiable framework that
predicts depth, generates a volumetric representation of a scene, and estimates 3D
box proposals. Third, to provide a full understanding of the scene, we tackled the
task of parsing a scene by segmenting it into meaningful regions, such as instances,
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Figure 1.4: Examples of our tasks for indoor scene understanding: Here, we show
the ground truth of a) depth (red is far, blue is close); b) some selected 3D object boxes
in red; and c) scene parsing subtasks consisting of predicting semantics, instances
and some selected support types on instances. In the right-most row, we outline
instances by red line, label the four semantic categories with four different colours,
and indicate that an instance is supported by another from below with a line with an

arrow, and supported from behind by a line with a diamond.

predicting pixel-wise semantic labels and reasoning about the support relationships
between arbitrary pairs of regions. To achieve this, we took advantage of the pre-
dicted depth to facilitate instance segmentation. More importantly, we exploited
the mutual connections between the three subtasks: instance segmentation should
respect semantic labels; support relations should depend on semantics and respect
good instance regions [Zhuo et al., 2017]. An example is shown in Figure 1.4.

1.2.1 Depth Estimation with Scene Structure Analysis

Without any prior information, estimating the depth of a scene from a single monoc-
ular image is a highly ambiguous problem. Humans, however, can easily perceive
depth from a static monocular input, thanks to the knowledge they accumulated
over the years. Intuitively, this suggests that learning from existing image-depth
pairs should make single image depth estimation a realistic, achievable goal.

Our model is motivated by the previous approaches to monocular depth esti-
mation [Saxena et al., 2007, 2009; Liu et al., 2010; Karsch et al., 2012; Liu et al., 2014;
Ladicky et al., 2014]. Before our work, these approaches typically reason about depth
locally. However, we believe humans can perceive depth reliably with one eye thanks
to high-level knowledge about scene structures, not local-scale information. In our
work, we propose to exploit high-level scene structures for detailed depth estimation.
To this end, we introduce an approach that relies on a hierarchical representation of
the scene that models local, mid-level and global scene structures. More specifically,
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our hierarchical representation includes different levels of information: superpixels,
regions, and room layout. We formulate the single image depth estimation task as
inferencing in a graphical model whose edges encode the interactions within and
across different layers of the hierarchical representation. We experimentally demon-
strate the benefits of exploiting high-level scene structure over local depth estimation
methods.

1.2.2 3D Box Proposal from Monocular Image

Leveraging deep learning depth estimation approaches, e.g., [Eigen et al., 2014; Eigen
and Fergus, 2015], we propose to predict 3D box proposals for objects based on single
monocular image. Previous object proposal approaches based on monocular images
typically reason about objects in 2D bounding boxes [Ren et al., 2015; Girshick, 2015;
Dai et al., 2016; He et al., 2017]. By contrast, we argue that it is more natural to
represent objects in 3D space. To this end, we developed an integrated, fully dif-
ferentiable framework to reason about class-independent 3D box proposals from a
single monocular image. In particular, we designed a deep network which consists
of three modules, that predict a depth map [Eigen and Fergus, 2015], extract a vol-
umetric representation of the scene, and generate 3D object proposals in the form
of cuboids, respectively. At the core of our approach lies a novel residual, differen-
tiable truncated signed distance function module, which accounts for the relatively
low accuracy of the predicted depth map and extracts a 3D volumetric representa-
tion of the scene. To guarantee the effectiveness of our volumetric representation, we
work on a multi-task learning scenario, where we estimate 3D boxes as well as the
depth map simultaneously. To the best of our knowledge, this constitutes the first
attempt to work in this challenging setting for complex indoor scene understanding.
We experimentally demonstrate the effectiveness of our approach on 3D box pro-
posal generation, as well as evidence the benefits of the different components of our
framework.

1.2.3 Scene Parsing with Multi-Task Learning

To provide a full understanding of indoor scenes, we further focused on the task of
indoor scene parsing. Indoor scene parsing is a complex problem that consists of
multiple subtasks, such as segmenting a scene into regions that match instances [Ar-
beláez et al., 2014; Gupta et al., 2013; Shi and Malik, 2000], predicting pixel-wise
semantic labels in the scene [Long et al., 2015; Eigen and Fergus, 2015; Zheng et al.,
2015] and reasoning about the support relationships between arbitrary pairs of re-
gions [Jia et al., 2013; Guo and Hoiem, 2013; Silberman et al., 2012a; Yang et al., 2017].
Specifically, the support relationships between regions indicate whether one region
is supported by the other from below, or behind, or otherwise no support relation-
ship [Silberman et al., 2012a; Zhuo et al., 2017]. These subtasks provide detailed
category and boundary information about the instances, as well as how they interact
with each other, and can thus have a great impact in a wide range of applications,
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such as personal robotics, indoor navigation, indoor design, and augmented reality.
In the works mentioned above, these subtasks are usually tackled independently,

despite the fact that strong connections exist among them. In addition, to our best
knowledge, these works rely on depth information. To fully leverage connections
between the subtasks, we introduced an integrated model that jointly reasons about
instances, semantics and their support relationships, which work in this general sce-
nario with only a single monocular image. In particular, by exploiting a hierarchical
segmentation, we formulate our problem as that of jointly finding the regions that
correspond to instances, and estimating their semantics and pairwise support rela-
tionships. We modeled this with a Markov Random Field, which allows us to further
encode links between the different types of variables. The parameters were learned
by a structural SVM framework. To complement the information of the monocular
color image, we exploited the predicted depth [Eigen and Fergus, 2015] to facili-
tate our predictions, particularly that of instances and support relationships. The
predicted depth facilitated instance segmentation by generating a better hierarchi-
cal segmentation respecting depth boundaries, in contrast to approaches based on
only RGB images [Hoiem et al., 2011; Ren and Shakhnarovich, 2013]. The predicted
depth also facilitated support inference, because the support of an instance strongly
depends on the normal vector of its surface plane. We experimentally evidence that
taking into account the dependencies between regions, their semantics and their sup-
port relations helps improving the prediction of the corresponding variables, with a
particularly high impact on support relationships.

1.3 Thesis Outline

The remainer of this thesis is organized as follows,

• Chapter 2: Background. This chapter introduces the background theory of clas-
sification models we ultilized in this thesis. In particular, it includes the training
and inference of graphical models, and the theory behind deep learning.

• Chapter 3: Depth Estimation from Monocular Images. This chapter introduces
our novel depth estimation model with scene structure analysis.

• Chapter 4: 3D Box Proposals from Monocular Images. This chapter introduces
our novel monocular image 3D box proposal generation to predict depth, gen-
erate a scene volumetric representation and propose 3D boxes for objects in a
fully differentiable fashion.

• Chapter 5: Scene Parsing with Multi-Task Learning. This chapter introduces
our novel integrated graphical model for instance segmentation, semantic pre-
diction, and support relationship inference.

• Chapter 6: Conclusions and Future Work. In this chapter we conclude with a
summary of our contributions, open issues, and future research directions.
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Chapter 2

Background

This chapter introduces the background theory and models we employed in this
thesis. In our work, we utilize graphical models and deep learning techniques to
develop our models. In particular, considering the ability of graphical models to
encode complex dependencies among different variables, we use conditional random
fields (CRF) to encode the dependencies of variables in the tasks of depth estimation
and scene parsing. For monocular image 3D object box proposal, we take advantage
of deep learning techniques and build an integral deep convolutional neural network,
which is trainable in an end-to-end fashion for multiple sequential tasks. In short,
both CRF and deep learning play important roles in our work. Below, we review
the fundamentals of CRF and deep learning to help the reader better understand the
following chapters.

2.1 Conditional Random Field

CRF [Lafferty et al., 2001], a type of discrimitive probabilistic graphical model, is
generally used for labeling, such as semantic segmentation [He et al., 2004; Silber-
man et al., 2012a], instance segmentation [Silberman et al., 2014], and discrete depth
estimation [Karsch et al., 2012; Liu et al., 2014], to name a few. Instead of treating
each variable in a graph independently, it respects the relationships among variables.
By performing inference in the joint solution space over all variables, one can reach
a high quality configuration for the graph as a whole.

A graph consists of nodes (also known as vertices) and edges which link nodes.
In a probabilistic graphical model, each node represents a random variable, and
the edges express dependencies among them. Let us denote observations by X =
{x1, x2, ..., xK}, and their corresponding variables by Y = {y1, y2, ..., yK}, where each
variable yi takes a value/label from the state set L = {1, 2, .., N}. For example, in
a segmentation scenario, the nodes can be superpixels in an image, observations
X can be the appearance/features of superpixels such as color, and Y can be the
semantic labels, e.g., floor, ceiling, walls. In this context, edges can be links between
neighboring superpixels. Theoretically, a CRF captures the posterior joint probability
distribution over all the random variables, given the observations, that is P(Y|X) =
p(y1 = l1, y2 = l2, ..., yK = lk|x1, x2, ..., xK), ∀l1, l2, ..., lK ∈ L. By exploiting the notion

7
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of Gibbs distribution [Koller and Friedman, 2009], this probability distribution can
be defined by a corresponding energy function as

P(Y|X) =
1
Z

exp(−E(Y, X)), (2.1)

where E is an energy function for the graphical model, and Z, also known as the par-
tition function, is a constant normalization. An energy function typically comprises
unary terms, pairwise terms and high-order terms. Given observations for the nodes,
1) a unary term encodes the independent distribution of a variable over its possible
states/labels; 2) a pairwise term encodes the relationships, or conditional depen-
dencies, between two related variables ; 3) and a high-order term encodes complex
relationships among the variables within a "clique" of size greater than 2. A "clique"
is defined as a subset of nodes, where every two distinct nodes are connected by
an edge. Let us denote P the set constructed by pairs of related nodes, and C the
the set of cliques of size at least 3. In general, an energy function for a CRF can be
formulated as

E(Y, X) =
K

∑
i

φu(yi, xi) + ∑
(i,j)∈P

φp(yi, yj, xi, xj) + ∑
c∈C

φh(yc, xc) (2.2)

where φu, φp, φh are called potentials. Given a CRF, or rather, a posterior joint prob-
abilistic distribution on a graph, the ultimate goal is to find the set of state/label
combination over all the variables, that achieves the highest joint probability, namely
the lowest energy, over the graph, in the joint solution space. Let Y be a possible
label configuration for all the variables. Y, as defined above, is the set of Y, i.e., Y
encompasses all possible configurations of all the variables. In practice, inference in
a graphical model is formulated as

Ŷ = arg min
Y∈Ω

E(Y = Y, X) (2.3)

where Ω is the solution space, Ŷ is the best configuration in solution space over all
variables. The solution space of a CRF can have a number of NK solutions at most,
where, as mentioned before, N is the number of states for each variable, and K is
the number of variables. When K and N are large, it is infeasible to solve the above
optimization problem in a greedy manner. Therefore, many inference methods have
been proposed for efficient and fast inference. It is worth noting that we assume
each variable has the same number of states for simplicity. In practice, however, they
can have different numbers of states. In the later chapters of this thesis, we assume
all potentials depend on the observations, and omit the observations in our energy
functions to shorten the notation.
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Figure 2.1: Examples of graphs: Here we show graphical structures in shapes of (a)
chain, (b) tree, and (c) grid.

2.1.1 Inference

The goal of inference is to find the set of labels over all the variables, that minimizes
the energy function of a graphical model. Many inference techniques have been
developed to treat various graphical models [Boykov et al., 2001; Weiss et al., 2007;
Krähenbühl and Koltun, 2011]. A complete review of inference techniques is beyond
the scope of this chapter. We briefly introduce the ones we use in our work.

Exact inference is, in most cases, an NP-hard task. Inference on graphs with
a chain or tree structure, however, can be solved exactly, the global optimum can
be reached. Inference can be done by algorithms of searching shortest path, such
as max-sum [Bishop, 2006], which is also known as Viterbi algorithm, an efficient
dynamic programming algorithm. This procedure, however, is not natural to handle
cases with non-local constrains on the outputs [Roth and Yih, 2005]. To handle the
more general scenario that contains both local and non-local constraints, inference
can be converted to an Interger Linear Programming (ILP) problem [Roth and Yih,
2005], where the variables are constrained to a limited number of discrete states,
and abide some inequality, or equality constraints. In particular, it is in general
represented as

minimize
Y

g0(Y)

subject to gi(Y) ≤ 0, i = 1, 2, ..., Nc

hj(Y) = 0, i = 1, 2, ..., Mc

∀yi ∈ {0, 1, ..., N},
where,Y = {y1, y2, ..., yK}

(2.4)

In our work [Zhuo et al., 2017], we exploited the special case where the vari-
ables are boolean. In fact, the general case of (2.4) can be converted to a boolean
problem, by converting each yi to an N-dimentional vector ai = [a1

i , a2
i , ..., aN

i ], such
as aj

i ∈ {0, 1} and ∑N
j=1 aj

i = 1. This ILP formulation provides a systematic tech-
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nique for general scenarios, especially the ones with non-local constraints. In general,
ILP problems are solved using a linear-programming based branch-and-bound algo-
rithm [Nemhauser and Wolsey, 1988]. Existent commercial optimization toolboxes,
such as Gurobi, can solve problems of this type in tractable time in many scenarios
when the problem is properly formulated.

Inference in grid graphs, which contains cycles, is NP-hard and exact solutions
cannot be obtained. Several inference techniques, however, exploit the graph struc-
ture to obtain approximate solutions, which are sovable in polynomial time. Belief
Propagation (BP) is a classical iterative massage-passing technique for problems of
this type. In BP, each node collects messages/marginal potentials from its neighbor-
ing nodes, except its direct descendant, and passes them to its descendants. With
limited iterations, it can get an approximate lower bound of the energy function. In
our work [Zhuo et al., 2015], we use the technique of Distributed Convex Belief Prop-
agation (DCBP) [Schwing et al., 2011], which enables fast inference on a large graph
due to its distributed parallel computation. In particular, it partitions a graph into
several subgraphs and treats subgraphs, in parallel, as local optimization problems.
It then imposes agreements on the beliefs at the junctions of these subgraphs.

2.1.2 Learning a Graphical Model - Structural SVM

To start with, we rewrite above energy function in Eq. (2.2) to a parametric form

Ψ(Y, X) = −E(Y, X) = w · ψ(Y, X) (2.5)

where E(Y, X) is the energy function on the variable set Y, given the observations
X, and Ψ(Y, X) is its corresponding negative, i.e., the score function. ψ is the vector
concatenating all potential function values for a given Y, and w is a parameter vector.

For a graph defined on an image i, state assignments for the graph variables
can be divided into two categories, i.e., the ground truth assignment, Yi, and non-
ground-truth assignments, Y ∈ Ωi \ Yi (with Ωi the assignment space for the graph
defined on image i). We want to learn a parameter vector such that the ground-truth
assignment has the lower energy, i.e., the higher score, than the non-ground-truth
assignments.

∀Y ∈ Ωi \Yi, wT(ψ(Yi, Xi)− ψ(Y, Xi)) ≥ 0 (2.6)

To this end, we formulate this with probem by a hard-margin SVM. That is,

min
w

1
2

wTw

s.t. ∀i, ∀Y ∈ Ωi \Yi : wT(ψ(Yi, Xi)− ψ(Y, Xi)) ≥ 1
(2.7)

where the constraints are imposed on a set of image samples. To allow errors in train-
ing, the hard-margin optimization is relaxed with a soft-margin criterion and slack
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variables. In the end, this yields an optimization problem, called n-slack structural
SVM with margin-rescaling [Tsochantaridis et al., 2005] defined as

min
w,ε1,ε2,...,εn

1
2

wTw +
λ

n

n

∑
i=1

εi

s.t. ∀i, ∀Y ∈ Ωi \Yi, εi ≥ 0 : wT(ψ(Yi, Xi)− ψ(Y, Xi)) ≥ 4(Yi, Y)− εi

(2.8)

where 4(Yi, Y) is a task-dependent loss encoding the error of predicting output
Y given the ground truth Yi, which also works as a measure of the quality of a
prediction. The loss follows the assumptions that: 1) ground truth should have zero
loss, i.e., 4(Yi, Yi) = 0; 2) any non-ground-truth configuration has a positive loss,
i.e., 4(Yi, Y) > 0, ∀Y 6= Yi. Training a structural SVM aims to learn the parameter
vector that one pushes the score gap between an arbitrary predicted configuration
and the ground truth to be larger than the loss. This is formulated as constraints in
the problem of Eq. (2.8). This also allows the better predictions to have scores closer
to that of the ground truth than the worse predictions. In this sense, structural SVM
respects the ranks of the prediction quality.

Due to the combinatorial nature of the output space, there is an exponential num-
ber of constraints in Eq. (2.8), which makes optimization difficult. To reduce the
constraints, at each iteration, the algorithm only considers a set of most "violating"
output configurations, i.e., the ones that do not satisfy the constraints in Eq. (2.8).
For the i-th graph, to find its most "violating" output configuration, we optimize a
loss-augmented function

H̃i(w) = max
Y∈Ωi
4(Yi, Y)−wT(ψ(Yi, Xi)− ψ(Y, Xi)). (2.9)

Given the violated outputs, problem (2.8) is solved using the primal-dual tech-
nique [Tsochantaridis et al., 2005]. A training procedure with faster speed was pro-
posed by [Lacoste-Julien et al., 2013], which introduces a block-coordinate Frank-
Wolfe algorithm to compute the optimal step-size and yields a duality gap gurantee.
In practice, the parameters of (2.8) are trained in iterative manner on "hard" samples
in a set of graphs, each of which is defined on an image. In particular, the "hard"
samples, for which the current parameters work poorly, are selected based on H̃i(w).
Specifically, if H̃i(w) > 0 the current parameters work poorly on this sample, and we
need to use it to learn the parameters. Otherwise, all potential configurations satisfy
the constraints, and learning can skip this sample.

2.2 Deep Learning

The research on convolutional neural networks (CNN) began decades ago [LeCun
et al., 1990; Simard et al., 2003]. In recent years, CNNs have gone to extremely deep
architectures, making breakthrough achievements on recognition tasks [Krizhevsky
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Figure 2.2: A neural network with chain-like architecture [Vedaldi and Lenc, 2015].

et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al., 2015; He et al., 2016;
Huang et al., 2017]. The success of CNNs can be attributed to three critical points.
First, the successful deep convolutional neural networks (DCNNs) are carefully de-
signed. DCNNs usually consist of stacking processing layers, typically convolutions
and ReLUs, which enable them to generate features at multiple scales. The archi-
tecture ideas, such as inceptions and resnet, led to further significant development
to the deep learning family. Second, a crucial data development of large supervised
datasets makes efficient learning of deep network a reality. Early attempts to train
deep nets with unsupervised data could hardly achieve performance comparable
to current ones learned with supervised data. In the current era, however, large
labeled datasets of tens of millions of images, e.g., ImageNet [Deng et al., 2009],
makes it possible to learn a huge number of parameters. Third, the development of
graphics processing units (GPU) enables intensive parallel computation in feasible
time. Motivated by AlexNet [Krizhevsky et al., 2012], researchers exploited DCNNs
to go deeper, wider, and work more efficiently. Deep learning techniques are still
fast-developing, with novel neural units constantly added into the blocks of deep
learning, and more powerful frameworks replacing existing ones. A full review of
deep learning is beyond the scope of this section. We will focus on the fundamentals
related to our work.

2.2.1 Fundamentals

Deep learning provides a powerful framework for supervised learning. In general, a
convolutional neural network (convnet) is built as a cascade of basic computational
blocks. Let us denote by x the input data and by y the predictions. In a practi-
cal segmentation scenario, for example, the input here can be an RGB image, and
the predictions are a labeling map of the same resolution as the input [Long et al.,
2015]. A neural network with a chain-like architecture, as shown in Figure 2.2, can
be represented as a mapping from x to y [Vedaldi and Lenc, 2015],

y = f (x; w1, · · · , wL) = fL(· ; wL) ◦ fL−1(· ; wL−1) ◦ · · · ◦ f1(x0; w1), (2.10)

where x0 = x, wl is parameters in the l-th layer, and ◦ is the composition operator.
That is, for two functions, fl(· ; wl) ◦ fl−1(xl−2; wl−1) = fl( fl−1(xl−2; wl−1); wl). In
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the mapping above, each layer acts on the output of its predecessor, xl = fl(xl−1; wl),
depending on a set of parameters. Each layer, fl , defines an operation, which can be
anyone of convolution, pooling, rectified linear unit (ReLU) for activation function,
batch normalization, fully connected layer, etc. Among these functions, convolutions
depend on a filter size and a sliding stride and pooling also relies on a sliding stride.
In general, the filters are defined in the 2D spatial domain, however, 3D extensions
also exist for 3D data analysis. Each computational layer works on a local region
of an input feature map for this layer, where this region is defined by the size and
center of the local filter. When we trace back this region through the network to
the input image, it would correspond to an area, which is denoted as "receptive
field". The receptive field generally increments when a convnet gets deeper. This
fact reflects the hierarchical nature of convnets, whose features at the bottom layers
usually correspond to low level features such as edges or lines, while the top layers
yield high level conceptual information.

In a convnet, the last layer is generally a mapping from a feature map to the target,
e.g., a regression vector or classification scores. In supervised learning, the prediction
layer is generally followed by a task-dependent loss function, E( f (x; w1, . . . , wL), y),
where y is the ground-truth target. The loss function can be, for example, L2 square
loss for regression, or the cross-entropy loss for classification. Parameters of the
convnet are learned by back propagating the prediction errors, defined by the loss
function, to the input layer. For a convnet with a chain-like architecture, with no
skip connection, the gradient of the loss function with respect to the parameters of
an arbitrary layer is computed by applying the chain rule [Vedaldi and Lenc, 2015],

dE( f (x0; w1, · · · , wL), y)
d(vec wl)T

=
dE(xL = f (x0; w1, · · · , wL), y)

d(vec xL)T ×

× d vec fL(xL−1; wl)

d(vec xL−1)T × · · · × d vec fl+1(xl ; wl+1)

d(vec xl)T × d vec fl(xl−1; wl)

d(vec wl)T ,

(2.11)

where, vec(·) is the vectorizing operation. During training, the parameters can be
updated according to the gradient by a variety of optimization techniques [Bottou,
2012; Nesterov, 1983; Qian, 1999; Zeiler, 2012; Duchi et al., 2011; Kingma and Ba,
2014]. Among them, the most commonly used one is stochastic gradient descent
(SGD) defined as,

ˆdwl =
1
M

M

∑
i=1

dE( f (x0; w1, · · · , wL), y)
d(wl)T

wk
l = wk−1

l − εk · ˆdwl

(2.12)

where ˆdwl is the average gradient on M samples, wk
l is the updated parameter vector
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for the l-th layer at the k-th iteration. In general, with a proper learning rate ε,
learning converges to a local optimum after many iterations, if SGD is applied.

In essense, supervised deep learning learns the data representation, and the clas-
sifier or regressor, in an integrated manner. Compared to traditional methods that
learn independent classifiers on hand-crafted features, deep learning is able to learn
superior classifier and representation that better match each other. Note that, here,
we introduce the theory of convnet in chain architectures. In reality, however, dif-
ferent architectures can be exploited, whose forward and backward processes can be
easily obtained from Eqs. (2.10) and (2.11).

2.2.1.1 2D

Here, we introduce deep learning blocks in 2D space. Let us denote an input feature
map by x ∈ RH×W×D, an output feature map by y ∈ RH”×W”×D”, and a processing
filter with kernel f ∈ RH′×W ′×D×D” and a bias vector b ∈ RD”×1. sh and sw are
sliding strides on height and width, respecitively. We list some basic computational
layers below.

• Convolution: y(i”, j”, d”) = b(d”) + ∑H′
i′=1 ∑W ′

j′=1 ∑D
d′=1 f(i′, j′, d′)x(sh(i” − 1) +

i′, sw(j”− 1) + j′, d′, d”)

• ReLU: y(i”, j”, d) = max{0, x(i”, j”, d)}

• Max Pooling: y(i”, j”, d) = max
1<i′<H′,1<j′<W ′

x(sh(i”− 1) + i′, sw(j”− 1) + j′, d)

In addition, the fully connected layer can be though of as an extreme form of
convolution, whose kernel covers the full feature map. A typical layer is generally
constructed by several convolution filters, each followed by a ReLU and a max pool-
ing followed sequentially. In deep learning, a convolution is, by default, followed
by an activation function, such as ReLU, sigmoid, and tanh, to provide non-linearity.
Convolutions in a layer generate feature maps of size similar to the input, while the
max pooling downsamples the feature map for next layer to increase contextual in-
formation. In addition, there exist layers of other types, such as the inception module
in GoogLeNet [Szegedy et al., 2015], and the residual layer in ResNet [He et al., 2016].

When there is enough computation power and a large set of data samples, we
usually train the model with a minibatch which contains several samples. In this
scenario, batch normalization [Ioffe and Szegedy, 2015] reduces the internal covariate
shift, which facilitates fast and stable training. In some cases, it can replace dropout,
which randomly drops a part of parameters during training to prevent overfitting.
In particular, batch normalization normalizes each channel of the feature map, x, by
averaging over batch instances. Let M be the batch size, x be the input, and y be the
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Figure 2.3: VGG16: The structure is shown from left to right, from top to bottom,
where each convolutional filter is on size k × k × c, where k is the kernel size, c is
number of channel. In this figure, the parameters of the convolution layer is shown
in the format "conv<k>_<c>". Here, each convolution is be default followed by a

ReLU activation function [Simonyan and Zisserman, 2014].

output, where x, y ∈ RH×W×D×M. Batch normalization is formulated as

y(i, j, d, m) = wd
x(i, j, d, m)− µd√

δ2
d + ε

+ bd,

s.t. µd =
1
M

M

∑
m=1

x(i, j, d, m), δ2
d =

1
M

M

∑
m=1

(x(i, j, d, m)− µd)
2

(2.13)

where wd and bd are the scale factor and a constant, for the d-th feature channel.

2.2.1.2 3D

In contrast to 2D convnets that work on images, 3D convnets work on volumet-
ric inputs, such as a scene volume. Therefore, the filters in 3D convnets need one
additional dimension. In general, they are straightforward extensions of the cor-
responding ones in 2D space. For example, a convolutional filter in 3D space is
in five dimensions, that f ∈ RH′×W ′×L′×D′×D”, and performs the convolution in a
similar manner to that in 2D space, but on a volume of four dimensions, to map a
layer input of D′ channels to an output of D” channels. Due to the additional di-
mension, the memory consumption increases significantly to store the features and
gradients. Therefore, with limited memory and time, it is hard to design a very
deep 3D convnet. However, in contrast to 2D appearance features, a 3D convnet has
the advantage of learning specific features in 3D, for example, 3D shapes in scene
volumes [Song and Xiao, 2016].

2.2.2 Models

In this section, we introduce several networks, on which our models are based.

VGG [Simonyan and Zisserman, 2014]: [Simonyan and Zisserman, 2014] intro-
duced several versions of very deep convolutional networks (VGG nets) of different
lengths. In Figure 2.3, we show the structure and parameters of a VGG net with
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Figure 2.4: Eigen’s Network for Depth Estimation [Eigen and Fergus, 2015]: This
network is trained on images of size 240× 320.
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Figure 2.5: Deep Sliding Shapes (DSS) [Song and Xiao, 2016]: we show the structure
and parameters of the DSS network in this figure. This network takes a 3D scene

volume as input, and generates 3D object box proposals.

16 layers. In particular, the VGG16 consists of five convolutional blocks, followed
by three fully connected (FC) layers. VGG nets were first introduced in [Simonyan
and Zisserman, 2014] for classification on ImageNet, and the last fully connected
layer outputs classification probabilities on 1000 categories. The classification loss is
the cross-entropy loss. For other tasks, we can change the last layer to adapt to the
specific number of outputs.

Fully Convolutional Neural Network (FCNN) [Long et al., 2015]: FCNN adapted
the contemporary classification networks of [Krizhevsky et al., 2012; Simonyan and
Zisserman, 2014; Szegedy et al., 2015] into fully convolutional networks for the seg-
mentation task. In particular, for the model based on VGG16, it replaces the first
fully connected layer (fc6) of VGG16 with a convolutional layer with kernel size
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7× 7. For image segmentation, the FCNN upsamples the predictions with a decon-
volutional layer. For simplicity, the corresponding filter is set to be a bilinear filter.
This network of linear topology is named FCN-32s. Based on this, [Long et al., 2015]
developed directed acyclic graph (DAG) nets (FCN-16s and FCN-8s), with skip con-
nections from lower layers to higher ones, aiming for predictions that leverage global
information, as well as local details.

Eigen’s Net [Eigen and Fergus, 2015]: [Eigen and Fergus, 2015] developed a multi-
scale network based on the contemporary classification networks AlexNet and VGG
for each of the tasks of image segmentation, depth estimation, and surface normal
estimation from a monocular image. The architecture of this model is shown in Fig-
ure 2.4. In particular, this model consists of three scales: 1) the first scale generates
a coarse predicted map at low resolution, but large receptive field. This part is typi-
cally an AlexNet or a VGG net, except for the FC layer; 2) scale 2 and 3, respectively,
develop a shallow network on a larger feature map, with scale 3 contributing feature
map of highest resolution. In contrast to FCNN, this network combines feature maps
at multiple resolutions without sharing parameters.

Deep Sliding Shapes (DSS)[Song and Xiao, 2016]: DSS was developed to generate
3D box proposals, by taking a 3D scene volume as input, and predicting objectness
and location parameters for each of the 3D boxes. In particular, a scene is divided into
equally-spaced voxels with size of X × Y × Z. The model takes a scene volumetric
representation in four dimensions, x ∈ RX×Y×Z×6, as input, where each voxel in the
3D space has features of 6 dimensions, i.e., the signed truncated difference (TSDF)
in x, y, z directions and the RGB values from the corresponding 2D location of the
voxel. All its layers act in 3D. Each voxel of the output volume is associated with
19 anchors. These anchors represent potential 3D object bounding boxes of different
sizes and aspect ratios. In practice, these anchors are divided into two categories by
their size. For small anchors, the prediction is done from the bottom layers, which
corresponding smaller receptive fields, while those of larger anchors are estimated
by the top layers, which correspond to larger receptive fields. For each anchor, the
network outputs a 2-dimensional probability vector for objectness, which is followed
by a softmax loss, and 6-dimension estimations for the box center coordinates and
size in 3D space, which is followed by an L1-smooth loss. The network architecture
is shown in Figure 2.5.

2.3 Summary

In summary, in this chapter, we have introduced the fundamentals in CRF and deep
learning that we exploited in our works in chapters 3-5. In particular, we presented
the model representation, inference, learning procedure for CRFs, with an emphasis
on the pipelines for inference and learning. For deep learning, we have presented
the forward and backward process, and the architectures of several typical models.
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18 Background

Among the various types of computation layers in the deep learning family, we have
selected the ones we utilised in our work. In short, this chapter has provided a brief
background of the classical machine learning tools used in our work, and should
help the reader gain a better understanding of the following chapters.
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Chapter 3

Depth Estimation

From this chapter on, we will introduce the technical work done during the course of
this PhD. In particular, to understand a scene based on only a RGB image, we start
with solving the problem of depth estimation from a single monocular image. As we
know, depth information captures the distance of a 3D point to the camera, which,
as a complement to the color image, provides critical information for robotics/com-
puters to understand a scene in 3D. For example, depth is critical for perceiving the
absolute range of a room and the locations of objects. With depth at hand, it is also
easier to recognize occlusions, surface planes and corners, which usually pose great
challenges to scene understanding based on only color images. Estimating depth
facilitates overcoming the missing 3D geometric information, which can be applied
in and benefitial for many applications, such as 3D movie production, augmented
reality, robotic navigation, etc. In our work, i.e., Chapters 4 and 5, we also show
that predicted depth can facilitate other scene understanding tasks, such as 3D box
proposal generation and instance segmentation.

For the problem of monocular-image depth estimation, some approaches have
achieved promising performance. Unlike previous approaches that only reason lo-
cally, we propose to exploit the global structure of the scene to estimate its depth. In
particular, we propose a hierarchical representation of a scene at local, middle, and
global level, and build a graphical model whose edges encode the interactions within
and across the different layers of our hierarchy.

In the remainder of this chapter, we first introduce the motivation and idea in
section 3.1, and the related work in Section 3.2. We then provide the details of
our model in Section 3.3, and evaluate it with extensive experiments in Section 3.4.
Section 3.6 concludes the chapter.

3.1 Introduction

Without any prior information, estimating the depth of a scene from a single image
is a highly ambiguous problem. Early studies, however, have proved that humans
have good abilities at perceiving ordinal depth and surface orientation from a single
image [Cutting and Vishton, 1995; Koenderink et al., 1996; Koenderink, 1998; Zim-
merman et al., 1995]. In addition to the much information provided by a monocular

19
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(a) (b)

(c) (d)

Figure 3.1: Depth estimation from a single image: (a) Image; (b) ground-truth depth
map; (c) Estimated layout; and (d) detailed depth map. Color indicates depth (red is

far, blue is close).

image, this ability is also due to their accumulative knowledge in real life. This sug-
gests that learning from existing image-depth pairs could make single image depth
estimation a realistic, achievable goal.

Motivated by the early studies, the earlier approaches [Saxena et al., 2007, 2009;
Liu et al., 2010; Karsch et al., 2012; Liu et al., 2014; Ladicky et al., 2014; Eigen et al.,
2014] have achieved promising performances by learning from a large amount of
image-depth pairs. These methods, however, typically model depth only at a local
scale. For instance, [Ladicky et al., 2014] predicts the depth of each pixel individually.
While, in contrast, [Saxena et al., 2007, 2009; Liu et al., 2010; Karsch et al., 2012; Liu
et al., 2014] encode some higher-level information by modeling the relationships of
neighboring superpixels, the resulting methods still lack reasoning about the global
structure of the scene. This contradicts our intuition that humans exploit such higher-
level scene structure to apprehend their environment.

Recovering the structure of a scene has nevertheless been studied in the past [Ohta,
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1985; Hoiem et al., 2005, 2007a; Lee et al., 2009; Gupta et al., 2010b,a; Hedau et al.,
2010; Schwing et al., 2013; Fouhey et al., 2014]. The resulting methods typically rep-
resent the scene of interest at a coarse scale. As a consequence, they fail to provide
a detailed description of the scene. More importantly, while these methods indeed
infer the scene structure, they do not yield an absolute depth estimate; typically,
only normals are predicted by these techniques, which leaves at least a global scale
ambiguity for depth.

In this chapter, we propose to exploit high-level scene structure for detailed single
image depth estimation. To this end, we introduce an approach that relies on a
hierarchical representation of the scene depth encoding local, mid-level and global
information. This lets us model the detailed depth of a scene while still benefiting
from information about its global structure.

More specifically, our hierarchical representation of the scene depth consists of
three layers: superpixels, regions and layout. The superpixels allow us to model the
local depth variations in the scene. In contrast, the regions and layout let us account
for mid- and large-scale scene structures. We model the depth estimation problem
with a Conditional Markov Random Field (CRF) with variables for each layer in
our hierarchy. This CRF allows us to encode interactions within and across layers,
and thus to effectively exploit local and global information jointly. As illustrated in
Fig. 3.1, inference in our model therefore yields depth estimates ranging from coarse
to fine levels of details.

We demonstrate the effectiveness of our method on two standard indoor datasets.
Our experiments evidence the benefits of exploiting higher-level scene structure over
local depth estimation methods.

3.2 Related Work

In contrast to classical multiview approaches of 3D scene reconstruction, single im-
age depth estimation has gained popularity only recently. While the 2D-to-3D map-
ping is an ill-posed problem, existing work have proven that it is an achievable goal.
Among early works, some [Saxena et al., 2007; Karsch et al., 2012] assumed that im-
ages sharing similar scene appearance generally have similar depth maps at a coarse
level, while others [Liu et al., 2010; Ladicky et al., 2014] exploited semantic constraints
to improve depth. Recently, deep learning [Eigen et al., 2014; Li et al., 2015; Wang
et al., 2015a; Liu et al., 2015; Roy and Todorovic, 2016; Laina et al., 2016; Xu et al.,
2017] has led to great achievements in single image depth estimation, by intrinsi-
cally modeling the above mentioned assumptions. Among them, [Eigen et al., 2014]
made a breakthrough improvement on depth estimation by applying deep neural
nets to this task. Typically, the success of a deep learning model can be attributed to
the hierarchical representation it encodes, which is usually implemented by stacking
multiple convolutional layers that work on receptive fields of various sizes. However,
before the emergence of deep learning, the majority of traditional methods reasoned
about depth or scene structures at a single scale [Lee et al., 2009; Liu et al., 2014],
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and the information of multi-scale space had not been well explored. In contrast to
these methods, our depth estimation approach [Zhuo et al., 2015] models a scene
representation at different scales, i.e., superpixels, regions and room layout, and rea-
sons about scene structures as well as depth in one integrated model. In essense, our
model follows an idea analogous to deep models that learn representations on recep-
tive fields of various sizes, from small to large, and we demonstrate the effectiveness
of this idea using hand-crafted features. Below, our literature review focuses on the
methods based on traditional techniques, which fall in the same category as ours.

3.2.1 Depth Estimation

Due to the inherent ambiguities of the problem, existing approaches to monocular
image-based depth estimation rely on training data in the form of image-depth pairs.
In such a scenario, a natural approach is to learn regressors to predict local depth.
This approach was employed in [Liu et al., 2010], where a specific regressor from
image features to pixel-wise depth was trained for each semantic class in the dataset.
This assumes that depth is constrained by semantic classes, e.g., sky is far away, and
foreground objects are relative near, etc. Following a related idea, [Ladicky et al.,
2014] trained classifiers for specific semantic labels at some chosen canonical depths.
These classifiers were then employed to predict pixel depth. Several methods have
proposed to go beyond purely local depth estimation. For instance, [Baig et al., 2014]
introduced an approach based on sparse coding to directly predict the depth of the
entire scene. Many techniques favor modeling the relationships between neighboring
(super)pixels to encourage coherence across the image. With the exception of [Karsch
et al., 2012; Konrad et al., 2012a,b] that formulate depth recovery as a purely continu-
ous optimization problem, such coherence is typically encoded in a graphical model.
This approach was introduced by [Saxena et al., 2007, 2009] with relatively simple re-
lationships between the superpixels. A simple smoothness term was also employed
in [Liu et al., 2010] together with local geometric reasoning and the previously men-
tioned regression as data term. In [Liu et al., 2014], additional discrete variables were
employed to model more complex superpixel relationships, thus yielding a higher-
order discrete-continuous graphical model. Despite the reasoning about neighbor
interactions, all the above-mentioned models fail to consider the global structure of
the scene, which provides important cues for depth estimation. To fully incorporate
the structure context from local to global, our work [Zhuo et al., 2015] develops a
CRF model reasoning about the depth of superpixels of roughly equal sizes, and
of regions and room layout. To this end, our work takes advantage of the success
of scene structure analysis to incorporate scene representations at multiple scales.
In particular, we exploit mid-level regions and global scene layout to incorporate
high-level representations of the scene.

3.2.2 Scene Structure Analysis

Before the era of deep learning, estimating the structure of a scene has itself been an
active area of research, and can well assist the task of scene understanding. Here we
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briefly review the work in this area and describe its relationship with our task. Dat-
ing from the 1960s, "blocks world" [Roberts, 1963] had been proposed to understand
a scene. More recently, geometrical scene structures have been massively exploited.
In this context, [Torralba and Oliva, 2002] modeled structure as the absolute mean
depth of the scene. To model more detailed structure, many works originated from
the idea of geometric context introduced in [Hoiem et al., 2005]. [Hoiem et al., 2005,
2007a] reasoned about scene geometric structures at multiple scales by grouping su-
perpixels to three super classes and their vertical subclasses. It was later extended to
predict the layout of indoor scenes with a box model [Hedau et al., 2010; Lee et al.,
2010; Schwing et al., 2013], relying on the Manhattan world assumption [Coughlan
and Yuille, 1999]. In particular, the box model represents the scene as five surface
planes, i.e., ground, ceiling, and left, middle and right wall. To relax the strong con-
straint of the box model, forcing each pixel/superpixel belong to a surface, [Hedau
et al., 2009] predicted the probability of a pixel/superpixel belonging to a foreground
clutter. Instead of a box model, [Nedovic et al., 2010] classified a scene into 15 ge-
ometry categories to represent its structure. A more accurate representation was
proposed in [Lee et al., 2009], and was able of producing surface normals on sparse
segments. Similarly, in [Fouhey et al., 2013], local normals were predicted by ex-
ploiting Exemplar SVMs on detected discriminative regions. [Fouhey et al., 2014]
improved such normal estimation by making use of a CRF and reasoning about nor-
mal discontinuities. [Ladickỳ et al., 2014] estimated dense surface normal by a local-
coding regressor based on contextual and segment-based cues. These approaches
usually grouped superpixels/regions according to their its surface normals. How-
ever, they lack information of absolute depths, which is critical for many application
scenarios, such as 3D reconstruction. Instead, our work utilizes the scene structure to
incorporate mid-level and global scene structures for detailed depth estimation. To
this end, we introduce the hierarchical representation of the scene discussed in the
next section.

3.3 Methodology

In this section, we introduce our hierarchical model to perform single image depth
estimation. In particular, our model is built on three levels of scene structure repre-
sentations, i.e., superpixels for the local level, regions for the middle level, and room
layout for the global level. Our framework is illustrated in Figure 3.2.

As mentioned earlier, depth estimation is expressed as inference in a CRF. As
discussed in Chapter 2, a graphical model generally consists of nodes and edges.
The nodes are superpixels, regions, and the layout in our case. The edges, which
connect the nodes, encode relationships within and between nodes of the different
layers in our hierarchy framework. Inference in the graphical model allows the depth
estimation to leverage detailed depth, as well as the mid-level and global scene struc-
tures. To this end, we denote by Y, R and L the variables that represent local depth,
mid-level and global structures, respectively. Inference is achieved by maximizing
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Figure 3.2: Our monocular depth estimation framework.

the joint distribution of our CRF, or equivalently minimizing the energy

E(Y, R, L) = El(Y) + Em(Y, R) + Eg(Y, L) , (3.1)

where each individual energy term corresponds to a particular layer in our model.
In the remainder of this section, we describe these different terms in details.

3.3.1 Local Depth Estimation

To estimate detailed depth, our model relies on image superpixels. Each superpixel
is represented as a plane in 3D, which translates the depth estimation problem into
finding the best plane parameters for each superpixel. In particular, here, we encode
each plane with the depth of its centroid and its normal direction.

More specifically, let Y = {y1, y2, ..., yNs} be the set of discrete variables represent-
ing Ns superpixels in an image, where each yi can take values from a discrete state
space S . We define this state space by quantizing the range of valid depth for the
superpixel centroid into V values, with the range determined from the maximum
and minimum depth of the training data. Furthermore, we make use of the Man-
hattan world assumption, and restrict the superpixels normal direction to 3 possible
dominant directions, defined by the vanishing point estimation method of [Rother,

Draft Copy – 27 June 2018



§3.3 Methodology 25

Candidate  Neighbor  Images  &  DepthsInput  Query

Target  Depths

Figure 3.3: An example for global neighbor search: We show several neighbor im-
ages to a query image retrieved using image global context features. These neighbors

depict either analogous layout, or objects similar to those in the input image.

2002]. This lets us define the first energy term in Eq. (3.1) as

El(Y) = ∑
p

φp(yp) + ∑
p,q

φp,q(yp, yq) , (3.2)

where φp is a unary potential encoding the cost of assigning label yp to superpixel p,
and φp,q(yp, yq) is a pairwise potential encouraging coherence across the superpixels.

The unary potential is based on the regression term in [Liu et al., 2014]. Due to
the fact that superpixels occupy very small areas, and their features are insufficient
to find the neighbors similar in depth, we rely on global context. To this end, we first
retrieve K candidate training images similar to the input image by nearest-neighbor
search based on a combination of distances on mutiple features, i.e., L2 distances
on GIST [Oliva and Torralba, 2001] and ObjectBank [Li et al., 2010] features, and
χ2-distance1 on PHOG [Bosch et al., 2007]. Among these features, GIST and PHOG
capture low-level scene representations, which summarize the gradient distribution
of a scene image, while ObjectBank captures a high-level image representation, i.e.,
a response map to a set of pretrained object detectors. In practice, we select the can-
didate images from the training data in a leave-one-image-out manner. An example
is shown in Figure 3.3. With the neighbor training images at hand, we compute, for
each superpixel of the input image, the plane parameters of the corresponding area
in each candidate, by fitting a plane from ground truth depths using RANSAC. We
then use Gaussian Process (GP) regressors [Bishop, 2006] to predict the plane param-
eters of the superpixel of interest from these plane parameters (i.e., one regressor for
each of the four plane parameters). The GP regressors rely on an RBF kernel.

1The χ2-distance measures the difference between two vectors h and p as ∑i
1
2 (hi − pi)

2/(hi + pi).
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(a) (b) (c)

Figure 3.4: An example of boundary occlusion map: (a) Image; (b) depth gradients,
where color indicates gradient (red is large, blue is small).; and (c) ground truth

boundary occlusion map. The boundary occlusion is labelled in purple.

Given the regressed depth on superpixel center and the regressed surface nor-
mal, we then can retrieve the depth of arbitrary points on the superpixel by the
following procedure. Let [nx, ny, nz] be the normal vector, dc the depth of the cen-
troid of a superpixel. The corresponding 3D coordinates [Xc, Yc, Zc] then are given
by dcK−1[xc, yc, 1]T, where [xc, yc] are the 2D coordinates of the centroid, and K is
the camera intrinsic matrix. Let f = [nx, ny, nz, e] denote the paramters of a surface
plane defined on the superpixel. As we know, for any point on a plane, we have
fT[X, Y, Z, 1] = 0. Following this rule, we can calculate the fourth parameter of the
plane as e = −nxxc + nyyc + nzzc. Then, for an arbitrary point on the superpixel,
with 2D coordinates [x, y], its depth d can be calculated as the intersection of the
plane with its visual ray, i.e., d = −e

[nx ,ny,nz]TK−1[x,y,1] .

Let di
r,p be the depth of the ith pixel of superpixel p, estimated from the regression

results. We define our unary potential as

φp(yp) =
1

Np

Np

∑
i=1

(
di

p(yp)− di
r,p

)2
, (3.3)

where Np is the number of pixels in superpixel p and di
p is the depth of pixel i in

superpixel p for a particular state yp.

The pairwise term φp,q relies on an occlusion classifier trained on the features
of [Hoiem et al., 2007b]. In practice, we assign non-occlusion/occlusion labels ac-
cording to the average depth gradient on the edges, as shown in the example in Fig-
ure 3.4. The two-class classifier is trained based on boosted decision trees [Collins
et al., 2002], with a non-occlusion/occlusion sampling ratio of 3.0. Given the pre-
dicted occlusion label opq for the boundary between two neighboring superpixels p
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Figure 3.5: Procedure for generating Mid-level unaries: This depicts the precedure
for generating mid-level unaries on regions.

and q, this potential is expressed as

φp,q(yp, yq) = wl ·


0 if opq = 1

gpq‖np(yp)− nq(yq)‖2+
1

Npq
∑

Npq
j=1(d

j
p(yp)− dj

q(yq))2 if opq = 0
(3.4)

where Npq is the number of pixels shared by superpixels p and q, np(yp) is the
normal corresponding to a particular state yp, and gpq is a weight based on the
image gradient on the boundary of the superpixels, i.e., gpq = exp(−µpq/σ) with
µpq the mean gradient on the boundary. We assume that two neighbor superpixels
have more chance to belong to two hinged planes, while the image gradient on the
boundary is large, and in this case we penalize less their surface normal difference.

While inspired by [Liu et al., 2014], the energy described above includes at most
pairwise terms, and therefore allows us to perform inference more efficiently. Impor-
tantly, however, this energy still reasons at a local level. In the following, we present
our approach to incorporate higher-level scene structures via the additional terms in
Eq. (3.1).

3.3.2 Exploiting Mid-level Structures

The superpixels employed above are typically quite small and therefore encode lit-
tle information about the scene. As a consequence, not only do they encode little
structure, but one also cannot reliably exploit their appearance to help depth predic-
tion. Thus only their location in the candidate images retrieved using global image
descriptors is utilized in the previous model. To better exploit appearance and en-
code more information about the scene structure, we propose to make use of larger
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regions.
To this end, let R = {ri, r2, ..., rNr} be the set of discrete variables representing Nr

regions extracted from the input image, where each ri can be assigned a value from
the same state space S as the superpixel variables {yp}. We define the second term
in Eq. (3.1) as

Em(Y, R) = ∑
γ

φγ(rγ) + ∑
γ,p

φγ,p(rγ, yp) , (3.5)

where φγ is a unary potential on the region variables, and φγ,p a pairwise potential
accounting for the interactions of the regions and the superpixels.

Since our regions are much larger than our superpixels, their appearance is also
more discriminative. Therefore, we follow a feature-based nonparametric approach
inspired by [Tighe and Lazebnik, 2010] to define the unary term φγ. The procedure
generating region unaries is illustrated in Figure 3.5. In particular, we first retrieve Kr

candidate training images by nearest neighbor search using image-level GIST, PHOG
and ObjectBank features. Here, we select the Kr images based on their best rank after
nearest-neighbor search on each feature type individually. We found this strategy
to be more reliable than combining the features for large retrieval sets. For each
region in the input image, we compute region-level features2 and retrieve Kc nearest-
neighbor regions from the candidate image pools for each feature type, after pruning
the ones that are too distant from and with too dissimilar sizes to the query region.
Each superpixel in each retrieved region then votes for a centroid depth and a normal
orientation in a V-dimensional and a 3-dimensional histogram, respectively. Let us
denote by Pd(d) and Pn(n) the resulting normalized histograms and Pdn(d, n) the
bin-wise product of Pd(d) and Pn(n) (i.e., a 3V-dimensional histogram). We express
the unary term in Eq. (3.5) as

φγ(rγ) = wm · (max (Pdn(d(rγ), n(rγ)))− Pdn(d(rγ), n(rγ))) ,

where d(rγ) is the centroid depth corresponding to the state rγ, and similarly for the
normal direction.

The pairwise term in Eq. (3.5) penalizes inconsistencies between the depth pre-
dicted for a region and the depth predicted for the superpixels it covers. For each
superpixel in a region, this term is defined as

φγ,p(rγ, yp) =
wm,l

Np

Np

∑
i=1

(
di

p(yp)− di
γ(rγ)

)2
, (3.6)

where Np is the number of pixels in superpixel p, and, with a slight abuse of notation
w.r.t. index i, di

p(yp) and di
γ(rγ) represent the depth of the ith pixel in superpixel p

and of its corresponding pixel in region γ.
Note that the energy for the mid-level structures can be thought of as encoding

longer range connections between the superpixels. Importantly, however, the result-
ing model remains pairwise.

2We used the same 20 features as in [Tighe and Lazebnik, 2010].

Draft Copy – 27 June 2018



§3.3 Methodology 29

Extracting Regions
Here, we briefly describe our strategy to extract the regions acting as mid-level

structures in the potentials described above. Our goal is to obtain regions that are
preferably (close to) planar, of relatively uniform appearance and as large as possible.
To this end, we rely on the gPb+Segmentation framework of [Arbelaez et al., 2011].

Since our training data consists of RGB-D images, we can directly employ the
RGB-D extension of the gPb+Segmentation framework, introduced recently by [Gupta
et al., 2014b; Ren et al., 2012]. At test time, however, we only have access to RGB im-
ages. An easy way around this problem would be to directly employ the original
method of [Arbelaez et al., 2011]. Unfortunately, the resulting regions are either
highly non-planar, or too small, both of which make them ill-suited for our purpose.

To address this issue, we propose to compute the probability of a boundary by
combining two different sources of information. First, we rely on the standard gPb
algorithm applied to our RGB input image. As a second source of information, we
make use of the estimated scene geometry in the form of the orientation map of [Lee
et al., 2009]. Orientation maps assign one major normal direction to the pixels in
an image. Unfortunately, these maps are sparse (i.e., not all pixels are assigned an
orientation). Furthermore, for our purpose, we would not want to have all pixels
with the same orientation to belong to the same region, since they could potentially
belong to different surfaces. Therefore, we compute the connected components of
the orientation maps, and assign a label to each pixel indicating the component it
belongs to. We then apply the gPb algorithm with brightness features only to the
resulting label image.

Let us denote by gPbrgb and gPbg the boundary probabilities obtained from the
RGB image and the geometry image, respectively. The combined boundary proba-
bility of a pixel at location (u, v) for boundary orientation θ is then given by

gPbc(u, v, θ) = (1− α)gPbrgb(u, v, θ) + αgPbg(u, v, θ),

where, in practice, we use α = 0.5. To obtain the final regions, we then apply the
OWT-UCM method of [Arbelaez et al., 2011] with a threshold of 0.1 on this combined
boundary map. We found this combination of RGB and geometry cues to yield large,
planar and uniform regions, well-suited for our approach. An example of our regions
is shown in Figure 3.2.

3.3.3 Incorporating Global Structure

As a final layer in our representation, we aim to reason about the global structure
of the scene, which neither the superpixels, nor the regions are able to model. To
this end, we make use of the layout estimation method of [Hedau et al., 2009]. This
method models the geometry of an indoor scene as a box made of five surfaces
(i.e., left/middle/right wall, ceiling and floor), with an additional prediction of the
probability of each pixel to belong to clutter. A layout example is illustrated in
Figure 3.2, where the scene is modeled by three major surface planes, i.e., floor,
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left wall, right wall. The normal vectors of the surface planes are estimated by the
vanishing points. Note, however, that the output of this method is not truly a 3D
representation, in the sense that the global scale of the box is not determined.

To make use of such global structure, let us denote by L the discrete variable
encoding the scale of the predicted layout, which can take value in a state space L
representing quantized scales. The energy for the last layer in our model can be
written as

Eg(Y, L) = ∑
p

φL,p(L, yp) , (3.7)

and thus consists of a single pairwise potential that encourages coherence between
the superpixels and the layout. In particular, we define this potential as

φL,p(L, yp) =
wg

Np

Np

∑
i=1

(1− Pi
c) · (di

p(yp)− di
L(L))2 , (3.8)

where Pi
c denotes the probability of pixel i belonging to clutter, and, with a similar

slight abuse of notation w.r.t. index i as before, di
p(yp) and di

L(L) represent the depth
of the ith pixel in superpixel p and of its corresponding pixel in the layout. The use
of the clutter probability prevents us from oversmoothing the depth predicted by the
superpixels.

Since this energy term is pairwise, so is our entire model. In our experiments, we
make use of the Distributed Convex Belief Propagation (DCBP) method of [Schwing
et al., 2011] to perform inference in our CRF. Note that the inference results yield not
only a detailed depth estimate coming from the superpixels, but also an estimate of
the region depths, as well as a full 3D layout of the scene.

3.4 Experiments

We evaluated our approach on two publicly available datasets: the NYUv2 depth
dataset [Silberman et al., 2012b] and the RMRC Indoor dataset [RMR, 2014]. These
two datasets both contain images collected from a wide variety of indoor scenes. For
NYUv2, we compare our results with the state-of-the-art contemporary single image
depth estimation methods. In particular, we consider the following three baselines:

1. DepthTransfer [Karsch et al., 2012]. This method predicts depth by transfer-
ring depth maps from similar images in the training set. These depth maps are
then merged by a continuous optimization strategy that encourages smooth-
ness across the image.

2. DC-Depth [Liu et al., 2014]. This technique makes use of a high-order discrete-
continuous CRF to estimate depth, where complex relationships between the
neighboring superpixels can be encoded via discrete variables.

3. SemanticDepth [Ladicky et al., 2014]. This method learns a pixelwise classifier
for each semantic class in the dataset at canonical depth, and therefore makes
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use of an additional source of information in the form of semantic pixel labels.
Besides, it was trained on a different training/test partition from the one pro-
vided with the dataset. Therefore comparison against their results is to take
with a pinch of salt.

For the sake of completeness, we also report the results of the DeepDepth method
of [Eigen et al., 2014]. This method, however, relies on a much larger training set
consisting of the 120K raw images of the NYUv2 dataset and thus should not be
considered as a true baseline.

In addition to the comparison with these methods, we also perform an ablation
study where we provide the results of our local model (Section 3.3.1), the model that
consists of local model and mid-level structures (Sections 3.3.1 and 3.3.2), and the
model that consists of local model and global structure (Sections 3.3.1 and 3.3.3). We
refer to these models as Ours-local, Ours-mid and Ours-global-only, respectively.
Our complete model will be referred to as Ours.

For quantitative evaluation, we report the following three standard metrics: av-
erage relative error (rel), average log10 error, and root mean squared error (rms). In
addition, we also report the metrics used in [Ladicky et al., 2014]. These metrics are
defined as

1. average relative error (rel):
1
N ∑u

|gu − du|
gu

2. average log10 error:
1
N ∑u |log10gu − log10du|

3. root mean squared error (rms):

√
1
N ∑u(gu − du)2

4. % correct:
(

1
N

N
∑

u=1
[[max(

du

g∗u
,

g∗u
du

) = δ < t]]
)
· 100, with t = 1.25, 1.252, 1.253

where gu is the ground-truth depth at pixel u, du is the corresponding estimated
depth, N is the total number of pixels in all the images, and [[·]] denotes the indicator
function. Furthermore, even though normal estimation is not the main target of our
approach, we report the five normal error metrics used in [Fouhey et al., 2013]: the
mean and median angle difference between the estimated normals and the ground-
truth ones, and the percentage of pixels whose angle difference w.r.t. ground-truth
is below a threshold (i.e., θ < 11.25, 22.5 and 30 degrees). To evaluate these metrics,
the scene normals were estimated from the predicted depth maps by the method
of [Fouhey et al., 2013].

In our experiments, the superpixels were computed using SLIC [Achanta et al.,
2012]. In particular, we generate 638 superpixels per image on average. We find that
this configuration yields an affordable computation cost and reasonable superpixel
sizes to avoid boundary crossing. For each test image, we retrieve K = 7 candidates
from the training images to obtain the input to the superpixel regression model.
The occlusion classifier on boundaries of superpixels was trained on the standard
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Method rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

DepthTransfer 0.374 0.134 1.12 49.81% 79.46% 93.75%
DC-Depth 0.335 0.127 1.06 51.55% 82.32% 95.00%

SemanticDepth - - - 54.22% 82.90% 94.09%
Ours 0.305 0.122 1.04 52.50% 83.77% 96.16%

Table 3.1: NYUv2: Comparison of our approach with the baselines on depth. In
terms of depth accuracy, we outperform the two baselines (DepthTransfer and DC-
Depth) working under the same settings as us. Furthermore, we outperform the
SemanticDepth approach on two out of three thresholds, despite the fact that we do
not make use of any pixel label information. Recall, however, that SemanticDepth

employed a different training/test partition.

training set of the NYUv2 dataset [Silberman et al., 2012a], and achieves an average
accuracy of 72.1% on the NYUv2 test images. For the regions, we retrieve Kr = 250
candidate images. For each query region and each local features, we then obtain
Kc = 30 candidate regions, after pruning the candidate regions whose centroid is
at a distance d > 100 pixels from the query region centroid, and whose area ratio
(rarea = 2(areaa − areab)/(areaa + areab)) with the query region is smaller than 0.2.
When building the histogram of normal orientations, we only take into account the
superpixels whose angle difference is less than 45 degrees w.r.t. at least one of the
three dominant normal directions in the query image. This allows us to discard the
candidates that have an orientation too different from the scene in the query image.

The states of our superpixel and region variables were obtained by quantizing
the depth from 0.5 to 10 by steps of 0.5 (i.e., V = 20). In conjunction with the 3
normal orientations, this yields 60 states for each variable. In practice, to speed up
inference, we restrict the states to the 20 values with highest probability Pdn in the
3V-dimensional histogram built for the region unary potential. This speed-up brings
very little loss of accuracy in the final results. In this setting, and given the result
of gPb, estimating the depth of an image containing roughly 650 superpixels takes
about 2 minutes.

The parameters of our CRF (weights of the potentials) were obtained by validation
on a set of 69 images taken among the training data. To this end, we followed
a strategy where the potentials were incrementally added to the energy after the
previous weights were determined. Note that we did not fine-tune the weights,
but mostly found the right order of magnitude of each potential among the values
{0.1, 1, 10, 100, 1000}.

3.4.1 Evaluation on NYUv2

The NYUv2 depth dataset contains 1449 pairs of aligned RGB and depth images,
partitioned into 795 training images and 654 test images. These images were acquired
in a variety of real-world indoor scenes. Each image was cropped to 427× 561 pixels.
In our evaluation, we make use of a mask in each image that only considers the
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Method mean median θ < 11.25 θ < 22.5 θ < 30
DepthTransfer 43.0 40.5 6.9% 23.2% 34.9%

DC-Depth 45.7 42.2 19.7% 25.7% 35.4%
Ours 46.7 41.9 21.1% 35.2% 41.7%

Table 3.2: NYUv2: Comparison of our approach with the baselines on normal.
In terms of normal accuracy, we outperform the baselines on three out of the five

metrics.

Image Ground-truth DepthTransfer DC-Depth Ours

Figure 3.6: NYUv2: Qualitative comparison. Depth maps estimated by the differ-
ent baselines and by our approach. Note that our approach typically avoids the
oversmoothing of DepthTransfer, while better modeling the scene structure than DC-

Depth.

ground-truth pixels with non-zero depth.
The results of our approach and of the baselines are shown in Table 3.1. In terms

of depth accuracy, our approach outperforms DepthTransfer and DC-Depth on all
error metrics, and SemanticDepth on two out of three threshold values, despite the
fact that it exploits the additional knowledge of pixel labels during training. The
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Method rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

Ours-local 0.334 0.128 1.05 50.35% 82.31% 95.44%
Ours-mid 0.312 0.123 1.03 52.08% 83.92% 96.13%

Ours-global-only 0.325 0.128 1.07 50.38% 82.06% 95.35%
Ours 0.305 0.122 1.04 52.50% 83.77% 96.16%

Table 3.3: NYU v2: Ablation study. We evaluate the influence of the different com-
ponents of our model. These results confirm that each parts of our model contributes

to the final results, with a strong influence of the mid-level structures.

Ground-truth Ours-local Ours-mid Ours-global-only Ours

Figure 3.7: NYUv2: Ablation study. Depth maps obtained by the different compo-
nents of our approach.

Image Ground-truth Superpixels Regions Layout

Figure 3.8: NYUv2: Depth of the different layers in our model. We show the depth
maps estimated by our final model, corresponding to the variables associated with

each layer in our hierarchy.

results of DeepDepth [Eigen et al., 2014] on the depth metrics are as follows. rel:
0.215; rms: 0.9; δ < 1.25: 61.10%; δ < 1.252: 88.70%; δ < 1.253: 97.10%. While they
are more accurate, recall that DeepDepth relies on a much larger training set. In
terms of normal accuracy, shown in Table 3.2, we outperform the baselines on three
out of the five metrics. It is worth noting that our model was not designed for surface
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Method rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

Ours-local 0.440 0.167 1.24 39.38% 72.41% 89.83%
Ours-mid 0.395 0.159 1.22 41.25% 74.29% 90.75%

Ours-global-only 0.423 0.167 1.26 38.64% 71.09% 88.76%
Ours 0.379 0.159 1.22 40.67% 73.67% 90.01%

Table 3.4: RMRC Indoor: Ablation study. We compare the different components of
our approach. As with NYUv2, we observe that all the parts of our model contribute

the its final result, with a large contribution from the mid-level structures.

Ground-truth Ours-local Ours-mid Ours-global-only Ours

Figure 3.9: RMRC Indoor: Ablation study. Depth maps obtained by the different
components of our approach.

normal estimation, which is a by-product of our depth estimation. Fig. 3.6 provides
a qualitative comparison of the depth maps recovered by the different approaches on
several images. Altogether, these results confirm that the use of mid-level and global
structure is beneficial.

In Table 3.3, we provide an analysis of the different parts of our model. The
analysis evidences the fact that each layer in the proposed hierarchy representation
contributes to improving the final accuracy. It also reveals that the mid-level struc-
tures seem to yield the main improvement, among the two kinds of high-level struc-
tures. In Fig. 3.7, we provide a qualitative comparison of the depth maps obtained
by the different components of our approach. Although not obvious at this scale,
we observed that, while the mid-level structures help spatial depth coherence, they
still respect the discontinuities in the image. Furthermore, the global structure yields
more accurate depth ordering in the entire scene.

In addition to the depth of the superpixels, our model also predicts depth from
the regions and from the global layout (although in a much coarser manner for the
latter). Some resulting depth maps are depicted in Fig. 3.8.
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Image Ground-truth Superpixels Regions Layout

Figure 3.10: RMRC Indoor: Depth of the different layers in our model. We show
the depth maps estimated by our final model, corresponding to the variables associ-

ated with each layer in our hierarchy.

3.4.2 Evaluation on RMRC Indoor

We also evaluated our approach on the RMRC Indoor dataset [RMR, 2014]. Since
this dataset does not provide ground-truth depth for the test images, and since our
goal was to evaluate the different components of our model, we only employed the
4105 training images, from which we randomly sampled 114 images to form a test set
with ground-truth. In this experiment, we used the same parameters as for NYUv2.
In Table 3.4, we provide the various error metrics for the different parts of our model.
As for NYUv2, we can see that each part contributes to the final results. Particularly,
the influence of the mid-level structures seems to be even larger than on NYUv2. To
provide the reader with a rough idea of how our results compare to other methods,
it is worth mentioning that, on the test data of the RMRC Challenge [RMR, 2014], the
best reported relative depth errors were 0.33 for [Eigen et al., 2014] and 0.39 for the
second best approach of [Baig and Torresani, 2016]. In Figs. 3.9 and 3.10, we show
the depth maps of the different components of our approach and the depth maps
predicted by the variables in the different layers of our final model, respectively.

3.5 Conclusion

We have introduced a single image depth estimation approach that exploits the struc-
ture of the scene at different levels of details. Our experiments have demonstrated
the benefits of such a structure-aware approach over local depth prediction methods.
In particular, our evaluation has evidenced the fact that the mid-level structures, i.e.,
the regions, provided the largest contribution to the final accuracy of our model.
A potential avenue for furture research would be to investigate if this can be lever-
aged to introduce better potentials in our model. Furthermore, incorporating the use
of semantic labels in our depth prediction framework could also lead to potential
improvement. Depth estimation attempts to predict absolute depth values, which
could then potentially be exploited for other high-level scene understanding tasks.
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Therefore, another potential research direction could be to jointly perform depth
estimation and a related task, such as 3D box proposal generation, following the in-
tuition that the related task can potentially benefit from the depth estimates. In the
next chapter, we introduce our work on 3D box proposal generation that leverages
depth estimation.
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Chapter 4

3D Box Proposal from Monocular
Image

Depth prediction, even though suffering from inaccuracy, has proven beneficial for
other related computer vision tasks, such as semantic segmentation in [Eigen and
Fergus, 2015]. In our work, we will utilize predicted depth maps to facilitate the
tasks of 3D box object proposal in this chapter and scene parsing in chapter 5. In the
following, we introduce our approach to generating 3D box proposals from a single
monocular RGB image.

Modern object detection methods typically rely on bounding box proposals as
input. While initially popularized in the 2D case, this idea has received increasing
attention for 3D bounding boxes. Nevertheless, existing 3D box proposal techniques
all assume having access to depth as input, which is unfortunately not always avail-
able in practice. However, depth estimation makes it possible to generate 3D box pro-
posals from a single monocular RGB image. To this end, we develop an integrated,
fully differentiable framework that inherently predicts a depth map, extracts a 3D
volumetric scene representation and generates 3D object proposals, as illustrated in
Figure 4.1. At the core of our approach lies a novel residual, differentiable truncated
signed distance function module, which, accounting for the relatively low accuracy
of the predicted depth map, extracts a 3D volumetric representation of the scene.
Our experiments on the standard NYUv2 dataset demonstrate that our framework
lets us generate high-quality 3D box proposals and that it outperforms the two-stage
technique consisting of successively performing state-of-the-art depth prediction and
depth-based 3D proposal generation.

In the previous chapter, we have performed depth estimation using traditional
models, independent of deep learning, with dramatic improvement over previous
methods also based on traditional techniques. Traditional models, however, have
limited accuracy due to their lower learning capacity than deep networks. Therefore,
in this chapter and the following one, we will leverage the progress of deep networks
for depth prediction.

Below, we first introduce the motivation and our idea in Section 4.1, and review
the related work in Section 4.2. We then describe our model in detail in Section 4.3,
evaluate it in Section 4.4, and conclude this chapter in Section 4.5.

39
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Figure 4.1: 3D object box proposal from a single image: (a) Image; (b) ground-
truth depth map; (c) Estimated depth; and (d) ground truth box(in red) and our

proposals(in blue). Color indicates depth (red is far, blue is close).

4.1 Introduction

In the context of 2D scene understanding, generating class-independent object pro-
posals, such as bounding boxes, has proven key to the success of modern object de-
tectors; it has led not only to faster runtimes but also to more accurate detections [Ren
et al., 2015]. Reasoning in 2D, however, only provides a limited description of the
scene. A 3D interpretation would be highly beneficial for many tasks, such as au-
tonomous navigation, robotics manipulation and Augmented Reality.

In recent years, several works have attempted to provide such a 3D interpretation
by going beyond 2D bounding boxes. In particular, several methods have been pro-
posed to model 3D objects with the 2D coordinates of the eight vertices of their 3D
bounding box [Dwibedi et al., 2016; Hedau et al., 2010; Payet and Todorovic, 2011].
While this indeed better captures the shape of the object, e.g., by better adapting to
orientations not parallel to the image axes, it still does not provide a 3D interpreta-
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tion; each 3D bounding box can only be recovered up to scale. By contrast, [Fidler
et al., 2012; Chen et al., 2016] truly reason in 3D. These works, however, have tackled
the class-specific scenario in outdoor scenes, and would thus not generalize well to
more cluttered environments, such as indoor scenes, and to arbitrary objects.

To the best of our knowledge, all the methods that consider the problem of gen-
erating class-independent object proposals [Chen et al., 2017; Song and Xiao, 2016]
assume the availability of depth information. In particular, [Song and Xiao, 2016]
achieved state-of-the-art results in indoor scenes by encoding a 3D scene with a trun-
cated signed distance function (TSDF) and developing a region proposal network
(RPN) based on 3D convolutions to generate proposals. In practice, however, depth
is not always available, in which case these methods are inapplicable.

In this chapter, we therefore introduce an approach to generating class-independent
3D box proposals from a single monocular RGB image. Recent work [Song and Xiao,
2016] has shown a great advantage on proposal performance compared to previous
approaches that fit 3D models to 2D predictions. Building upon this knowledge,
we aim at learning proposals based on encoded 3D representations. Based on the
recent progress in monocular depth estimation [Eigen and Fergus, 2015], the most
straightforward way to doing so would be to rely on a state-of-the-art method to
predict depth, followed by the state-of-the-art depth-based proposal generation tech-
nique of [Song and Xiao, 2016]. Here, however, we show that we can significantly
outperform this two-stage approach by developing an integrated, fully-differentiable
framework that can be trained in an end-to-end manner.

More specifically, we first propose a differentiable TSDF (DTSDF) module that can
be appended to a depth-prediction network and produces an approximate TSDF-
based representation. The quality of the resulting 3D representation, however, is
limited by the accuracy of the predicted depth map and by our approximation of the
TSDF, even when training the network end-to-end. To overcome this, we therefore
introduce a residual version of our DTSDF module, which allows us to compensate
for the depth inaccuracies and thus generate high-quality 3D box proposals.

We demonstrate the effectiveness of our method on the standard NYUv2 dataset.
Our experiments evidence the benefits of the different components of our integrated
framework. Furthermore, they show that our approach significantly outperforms
the two-stage approach consisting of successive depth prediction and box proposal
generation.

4.2 Related Work

Only limited work has been done on the task of generating class-independent 3D box
proposals from a single monocular image. In this section, we review the methods that
lie in the related fields of 2D and 3D box proposal generation, and the few existent
methods that predict class-dependent boxes from monocular image.

Nowadays, the majority of object detection methods rely on generating class-
independent object proposals. This trend was popularized in the 2D scenario, where
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diverse proposal mechanisms have been developed [Uijlings et al., 2013; Cheng et al.,
2014; Pinheiro et al., 2015; Hayder et al., 2016; Pont-Tuset et al., 2017], and has proven
highly beneficial for both accuracy and runtime [Ren et al., 2015; Girshick, 2015]. In
particular, in the current Deep Learning era, the region proposal network of [Ren
et al., 2015], which shares feature computation across the different regions, has been
adopted by several approaches [Song and Xiao, 2016; Dai et al., 2016; Hayder et al.,
2017; He et al., 2017].

With the growing popularity of 3D scene understanding, it therefore seems nat-
ural that several works have turned to the problem of generating 3D box proposals.
To this end, most approaches exploited the availability of depth sensors. In this set-
ting, the main trend consists of fitting a 3D model to the given point cloud inside
a 2D bounding box [Chen et al., 2017; Lin et al., 2013; Gupta et al., 2015; Deng and
Latecki, 2017], which typically leads to class-dependent methods. By contrast, the
work of [Maturana and Scherer, 2015; Song and Xiao, 2016] directly infers 3D boxes
by learning shape features in a volumetric scene representation. There are also some
other methods based on volumetric input. However, these methods focus on exploit-
ing object-centric image or CAD models for object classification, and are nontrivial to
extend to scene images [Wu et al., 2015; Qi et al., 2016]. In another research direction,
the work of [Qi et al., 2017a,b] exploited symmetric representation of unordered 3D
points. In this chapter, we introduce an approach that generates class-independent
3D box proposals directly from a single monocular image. While, in a different line
of research, a few attempts have been made to learn a mapping from 2D images
and 3D object representations [Fang et al., 2015; Wu et al., 2016; Girdhar et al., 2016;
Zhou et al., 2017], these methods were developed for object-centric images, and are
therefore not applicable to the complex indoor scene images that we deal with in this
thesis.

A few methods have nonetheless also attempted to reason with 3D boxes from
monocular input [Fidler et al., 2012; Chen et al., 2016]. These works, however, focused
on the class-specific scenario, and have only tackled cases where a small number of
classes are present in the scene. As such, they could not generalize to cluttered indoor
scenes, and more importantly, to the problem of class-independent object proposal
generation that we tackle here.

In short, to the best of our knowledge, our approach constitutes the first attempt
at generating class-independent 3D box proposals from a single monocular image.
To this end, we leverage the recent progress in monocular depth estimation [Karsch
et al., 2012; Liu et al., 2014; Ladicky et al., 2014; Eigen et al., 2014; Zhuo et al., 2015;
Eigen and Fergus, 2015; Liu et al., 2016; Laina et al., 2016] and develop a fully-
differentiable residual module able to generate a volumetric representation of a clut-
tered indoor scene from an input image.

4.2.1 Deep Learning-based Depth Estimation

The first part of our framework consists of a deep convnet for depth estimation. Here,
we briefly review the depth estimation methods, that are based on deep learning
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Figure 4.2: Our 3D object proposal framework. Our model consists of three parts
integrated in a single architecture: a depth estimation network (DepthNet); a resid-
ual module to convert the predicted depth into a volumetric representation; a region
proposal network (RPN). The middle part, which constitutes our key contribution,
consists of a differentiable TSDF (DTSDF) encoding and of a residual-side-path net-
work (rspNet) accounting for the predicted depth inaccuracies. These two subnet-
works take two 3D grids as input, which correspond to a voxelization of the scene 3D
volume and the projection of the depth map in this voxelization (see text for more
detail). Ultimately, our model outputs the coordinates of 3D candidate boxes and

corresponding objectness scores.

techniques.

Since the work of [Eigen et al., 2014], monocular depth estimation has entered the
deep learning era. In contrast to traditional methods discussed in Chapter 3, deep
models are usually trained with a much larger magnitude of data. [Eigen et al., 2014]
utilized 120K image-depth pairs to train a deep network to predict the pixel-wise
depth of a whole image. This network exploits the input at two scales: one branch
is a typical VGG/Alex Net acting on low resolution input to capture global scene
information; the other is a shallow convolution network taking as input of higher
resolution image to retrieve details. [Eigen and Fergus, 2015] later extended this
multi-scale deep convolutional neural network(DCNN) to three scales. Motivated by
this work, many approaches exploited more complex deep frameworks for monoc-
ular depth prediction [Li et al., 2015; Wang et al., 2015a; Liu et al., 2015; Roy and
Todorovic, 2016; Xu et al., 2017]. Recently, [Laina et al., 2016] improved the depth
estimation accuracy by incorporating an efficient upsampling scheme based on resid-
ual learning. Instead of estimating absolute depth values, some works focused on
its local difference, i.e., surface normal [Wang et al., 2015b; Bansal et al., 2016]. In
summary, while these approaches improve the accuracy of predicted depth/surface
normal for indoor scenes, they increase the complexity by incorporating stage-wise
training and dependencies of related tasks. For simplicity and integrated training,
we adopt the model of [Eigen and Fergus, 2015] to facilitate 3D box proposal gen-
eration from monocular image. In particular, deep learning based depth estimation
played a critical role to estimate box parameters in real 3D space.
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4.3 Methodology

As mentioned before, this work builds upon deep learning techniques, whose back-
ground is discussed in Chapter 2. Specifically, we aim to generate 3D object pro-
posals from a single monocular image. To this end, we design a multi-task deep
network that predicts a depth map, extracts a volumetric representation of the scene
and generates 3D object proposals in the form of cuboids. The corresponding three
subnetworks are shown in Figure 4.2. All three of them are differentiable, and the
entire network can thus be trained in an end-to-end fashion. In the remainder of
this section, we introduce our volumetric representation prediction network and the
object proposal subnetwork, and then discuss our overall training strategy.

4.3.1 Volumetric Representation Prediction Network

To build a 3D volumetric scene representation, we first estimate a pixel-wise depth
map from the input image and then compute an approximate TSDF from the corre-
sponding point cloud. Below, we introduce our approach to addressing these two
steps. Importantly, to be able to integrate the resulting modules in a complete multi-
task network, we design them so that they are fully differentiable.

4.3.1.1 Depth Estimation

In this work, we adopt the VGG-based depth estimation network of [Eigen and Fer-
gus, 2015] as our depth prediction network, whose detailed structure was introduced
in Section 2.2.2, Chapter 2. In particular, we utilize the first two scales of the network
of [Eigen and Fergus, 2015], which yields an output of size 55× 74. We then upsam-
ple the resulting depth map to the full image size using bilinear interpolation, which
can be cast as a convolution.

4.3.1.2 Differentiable TSDF

Given the depth map predicted by the depth network discussed above, we rely on a
TSDF, introduced by [Newcombe et al., 2011], as our volumetric scene representation.
In the accurate TSDF representation, the 3D space is divided into equally-spaced
voxels. Each voxel is assigned a value encoding the distance of the voxel center to
the closest surface point, derived from the depth map. Unfortunately, computing
such an accurate TSDF is not differentiable with respect to the input due to the use
of a nearest neighbor search procedure. To address this, and thus be able to exploit
this for end-to-end training, we propose to make use of a differentiable, projective
TSDF approximation. In particular, instead of looking for the nearest surface point
in the entire 3D space, we only perform the search along the visual ray of each voxel,
as exploited in [Newcombe et al., 2011; Song and Xiao, 2016]. Based on the projective
TSDF, we introduce a soft truncation function to compute the final representation,
which makes the entire process differentiable.
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More formally, we divide the 3D space into L × H ×W equally-spaced cells of
equal volume. Let us then denote by G ∈ RL×H×W the 3D grid whose nodes encode
the x, y, and z coordinates of the corresponding cell centers in the 3D world referen-
tial. Our goal now is to compute a TSDF value for each 3D point on G based on a
projective approximation.

Under a perspective camera model, the image location q = [xc, yc]T ∈ R2 ob-
tained by projection of a 3D point p = [x, y, z]T ∈ R3 can be expressed as

h(p) = bπ(KR−1p)c , (4.1)

where π is the perspective projection function, that is, π([x, y, z] = [x/z, y/z]), bc is
the floor operator, and K and R are the matrix of camera intrinsic parameters and the
camera rotation matrix, respectively. The latter only specifies the tilt angle, allowing
us to align the scene according to the gravity direction. Furthermore, given a depth
image D ∈ RM×N , the 3D point p̂ = [x̂, ŷ, ẑ]T at image location q can be obtained as

p̂ = c · D(q), c = RK−1[qT, 1]T . (4.2)

At each grid location p on G, the projective TSDF value can thus be obtained by
projecting p and computing the distance between p the corresponding depth map
point p̂.

More precisely, here, we consider the distances in the three directions x, y and z
separately. Let g(p, p̂) = p− p̂, and ψ = ‖g(p, p̂)‖2 be the distance. The difference
in z direction can be computed as n(p̂) = [0, 0, 1]R−1(p − p̂). Then, we define the
truncated signed distance functions in x, y and z as

f (p, p̂) =

{
1µ · s(n(p̂)) if ψ/δ ≥ 1

min(|g(p, p̂)|, 1µ) · s(n(p̂)) otherwise
(4.3)

where 1 ∈ R3 is a vector of ones, | · | computes the element-wise absolute value and
min(·) computes the element-wise minimum; δ = 0.1, µ = 0.05 and s(x) = tanh(k · x)
(with k = 10 in our experiments) truncates the distance to a signed constant. In
words, p̂ encodes the surface points, and the sign of the distance then indicates
whether the cell falls behind the surface, that is the cell is invisible (positive dis-
tance), or if it is visible (negative distance). We further assign zero values to the grid
locations of G whose 2D projections fall out of the image range, which we refer to as
invalid grid regions afterwards.

With this definition, the TSDF value at each location p on G is differentiable with
respect to p̂. Therefore, following the chain rule, since the values of p, K, R, and
therefore q are fixed, the TSDF values are differentiable with respect to the depth
prediction D. This will then allow us to employ this volumetric representation in an
end-to-end learning framework.
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conv1 pool1 conv2 pool2 deconv1 deconv2
kernel [3,3,3] [2,2,2] [3,3,3] [2,2,2] [3,3,3] [3,3,3]
channels 3 3 3 3 3 3
stride 1 2 1 2 2 2

Table 4.1: Parameters of our residual-side-path network. The kernel size is repre-
sented in the order [width, length, height]. In the first convolution, we convert from
the original 6 channels (3D cell center + 3D nearest point position along the visual
ray) to 3. In the remaining layers, we maintain the number of channels to 3 to match
the volumetric representation of the DTSDF and keep the memory requirement rel-
atively low. For each layer, the strides are the same for all three dimensions. We do

not use any biases in our layers.

4.3.1.3 Residual Network for Volumetric Representation

The DTSDF described above relies on the distance along the visual ray and, as men-
tioned before, is only an approximation to the true TSDF; the true nearest-neighbor
to a 3D point might not be on its visual ray. We have found, however, that, in practice,
the true neighbor is usually not far away from this approximation. Motivated by this
observation, and to further account for the inaccuracies in the estimated depth map,
we introduce a residual path to improve the DTSDF.

Specifically, the input to our residual-side-path network (rspNet) consists of a 3D
grid similar to G defined above. However, instead of only encoding the 3D position of
the corresponding cell center at each location, we further append to this position the
coordinates of the corresponding surface point p̂ along the visual ray. This 3D grid
with 6 channels then acts as input to an encoder-decoder network with the following
structure

input→ conv3d→ relu→ pool3d→ conv3d→ relu→ pool3d

→ deconv3d→ relu→ deconv3d→ relu→ output
(4.4)

where conv3d, deconv3d, pool3d represent convolution, deconvolution, pooling op-
erations on a 3D grid, respectively. The parameters defining the layers of our rspNet
are given in Table 4.1. Note that all convs/deconvs here contain no bias, so as to
guarantee zero values in invalid grid regions.

Intuitively, the given input information allows the rspNet to compute the distance
between the cell center and the corresponding surface point as in the DTSDF. How-
ever, by performing convolutions, it is also able to compensate for errors by looking
at larger regions in the reconstructed volume and thus making use of context.

Altogether, our approach to volumetric representation prediction lets us effec-
tively leverage the strengths of the explicit DTSDF computation and of the learning-
based rspNet. While the explicit computation is less flexible, it provides with a
reliable approximation of the true TSDF. By contrast, access to limited data might
make it hard to use the rspNet on its own, but it provides more flexibility to com-
pensate for the DTSDF and the depth prediction mistakes. The resulting volumetric
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representation is then used as input to the region proposal network described below.

4.3.2 3D Object Proposal Generation

4.3.2.1 3D Object Proposal Network

We follow the recent trend in generating object proposals consisting of sharing fea-
ture computation, thus speeding up runtime [Ren et al., 2015; Song and Xiao, 2016].
In particular, since we work in 3D, we adopt the multi-scale 3D region proposal
network (RPN) of the Deep Sliding Shapes (DSS) method of [Song and Xiao, 2016],
whose detailed structure was introduced in Section 2.2.2, Chapter 2. This network
relies on a volumetric representation as input, and is thus well suited to be appended
to the framework discussed above. As output, it produces another volume at a lower
resolution. To each voxel of the output volume are associated J anchors (J = 19 in
our work). These anchors represent potential 3D object bounding boxes of different
sizes and aspect ratios, and were defined according to the statistics of the training
data. The RPN then predicts a probability for each anchor to correspond to an actual
object at each cell location. Furthermore, it also regresses a 6D vector encoding the
center position and the three side lengths of the corresponding 3D bounding box.
Instead of pooling the features for each anchor separately, all the anchors of each
voxel share their features, but have different classifiers/regressors.

4.3.2.2 Extended Anchors

In [Song and Xiao, 2016], runtime and accuracy were improved by removing empty
anchors based on the input depth map. Here, however, we do not have access to the
ground-truth depth maps, and our depth predictions are imperfect. In practice, we
found that too many boxes were removed by this procedure. Furthermore, we also
observed that our depth prediction often essentially differed from the true one by
a single scale factor. Motivated by this, we therefore propose to enlarge the anchor
pool by scaling the depth maps.

The range of the scale factors between predicted and true depth maps on the
training set was found to be [0.8, 1.2]. We therefore scale the depth prediction with
a global scale in this range with a stride 0.05. Assuming that all resulting scaled
maps are valid ones, we only remove the anchors that do not contain any points
of the scaled depth maps. Since this procedure can quickly lead to a huge number
of anchors to consider, thus increasing runtime, we performed 3D non-maximum
suppression to remove anchors with a large overlap. We further limited the number
of valid anchors to 15,000 for each anchor type. Specifically, we keep all the non-
empty anchors in the original, unscaled depth maps, and add anchors from the
scaled depth maps by scoring them according to the corresponding inverse absolute
scale difference with 1, e.g., 1/|1.2− 1|.

As evidenced by our experiments, the quality of the anchors is important to our
results; our extended anchors allow us to obtain dense supervision in a huge 3D
space during training, and, at test time, they prevent high-scoring proposals from not
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being considered because they have been removed from the candidate pool. Never-
theless, as evidenced by our ablation study, the extended anchors are not the only
key to the success of our approach; they rather help boosting the effectiveness of our
residual volumetric prediction module.

4.3.3 Multi-task Loss and Network Training

We now turn to the problem of training our model. Assuming that we have access
to ground-truth depth maps during training, we propose to define a multi-task loss
consisting of two parts. The first one measures depth prediction error, and the second
encodes errors on the generated proposals themselves. Specifically, we define our loss
as

L = λLdepth(D, D∗) +
N

∑
i=1
Lrpn(pi, p∗i , ti, t∗i ) , (4.5)

where Ldepth is the depth loss between the predicted depth map D and the ground-
truth one D∗, and Lrpn is the object proposal loss comparing the predicted class
probability pi and regressed box parameters ti with the ground-truth ones p∗i and t∗i
for each of the N candidate anchors.

For the depth loss, we adopt the same loss function as in [Eigen et al., 2014]. Let
us denote the log difference of depth prediction with ground truth as yi = log di −
log d∗i , where d presents depth on a pixel, the depth loss is defined as,

Ldepth(D, D∗) =
1
n2 ∑

i,j
((log di − log dj)− (log d∗i − log d∗j ))

2

=
1
n ∑

i
y2

i −
1
n2 (∑

i
yi)

2 =
1
n ∑

i
y2

i −
1
n2 ∑

i,j
yiyj .

(4.6)

This depth loss respects the local depth variance by comparing relationships be-
tween pairs of pixels i, j in the output. In the last row of Eq. (4.6), the first term
calculates an absolute-scale l2 error; when considering both terms, this loss calcu-
lates a scale-invariant error. In [Eigen et al., 2014], a relaxed form of Eq. (4.6), i.e.,
1
n ∑i y2

i −
ν

n2 (∑i yi)
2, ν = 0.5, was used to generate good absolute-scale predictions

with slightly quatitatively improved results. In our work, we use the same relaxed
depth loss for training.

In practice, as evidenced by our experiments, we have found the depth loss to
be important, as it ensures that the input to the DTSDF and to the rspNet remains
meaningful for volumetric representation prediction.

The object proposal loss consists of two parts: a softmax loss for classification of
object vs non-object and a smooth `1 loss on the regression variables. The 3D regres-
sion loss is a direct extension of the one commonly used in 2D [Ren and Sudderth,
2016; Girshick, 2015]. Assuming that the objects lie on the ground, a 3D bound-
ing box can be defined by 7 parameters, [X, Y, Z, L, H, W, θ], where the first three
are the coordinates of the box center, the following three are the side lengths in the
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three directions, and θ is the orientation. In this paper, we approximate the orien-
tation of each object by the global scene orientation, which can be estimated from
the predicted depth [Uijlings et al., 2013]. We are therefore left with 6 parameters to
estimate.

Let us denote by [X∗, Y∗, Z∗, L∗, H∗, W∗], [X, Y, Z, L, H, W], and [Xa, Ya, Za, La, Ha, Wa]
the parameters of a ground-truth box, a predicted one, and an anchor, respectively.
To keep the magnitudes of these different values more comparable, we make use of
relative values defined as

tx =
(X− Xa)

Wa
, ty =

(Y−Ya)

Ha
, tz =

(Z− Za)

La

tw = log
(

W
Wa

)
, th = log

(
H
Ha

)
, tl = log

(
L
La

)
t∗x =

(X∗ − Xa)

Wa
, t∗y =

(Y∗ −Ya)

Ha
, t∗z =

(Z∗ − Za)

La

t∗w = log
(

W∗

Wa

)
, t∗h = log

(
H∗

Ha

)
, t∗l = log

(
L∗

La

)
,

(4.7)

where [t∗x, t∗y, t∗z , t∗w, t∗h, t∗l ] denote ground-truth values and [tx, ty, tz, tw, th, tl ] predicted
ones.

Altogether, our object proposal loss can thus be written as

Lrpn(p, p∗, t, t∗) = Lcls(p, p∗) + γ ∑
i∈s

r(t∗i − ti)

w.r.t. s = {x, y, z, w, h, l}
where

Lcls(p, p∗) = −p∗log(p)− (1− p∗)log(1− p)

and

r(x) =

{
0.5x2 |x| < 1

|x| − 0.5 otherwise

(4.8)

is the smooth `1 loss.

In practice, we first generate depth maps using the depth network. We then re-
move the empty anchors, following the procedure used to generate the extended
anchors discussed above, based on the depth predictions. At test time, we similarly
remove the empty boxes based on the predicted depth maps, and further perform 3D
non-maximum suppression according to the predicted probabilities p, with a thresh-
old of 0.35 on the volumetric IoU. Furthermore, we only keep the top K proposals
(K = 150 in our work) among the anchors of each of the 19 categories.
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4.4 Experimental Evaluation

We evaluate our model on the NYUv2 dataset [Silberman et al., 2012a], which consists
of RGB images with their corresponding depth maps. The ground-truth 3D bound-
ing boxes are provided with the SUN RGB-D dataset [Song et al., 2015]. NYUv2
contains 795 training images and 654 test images. In our experiments, we use only
RGB images as input, while ground-truth depth maps are employed for supervision
during training. The initial VGG-based depth estimation network of [Eigen and Fer-
gus, 2015] with only two scales achieves the following errors. rel: 0.141; log 10: 0.060;
δ < 1.25: 77.65%; δ < 1.252: 95.16%; δ < 1.253: 98.81%, where the definitions of these
metrics are introduced in Chapter 3. For the reconstruction volume, we adopt the
range and resolution used in [Song and Xiao, 2016], that is, [-2.6, 2.6] meters hori-
zontally, [-1.5,1] meters vertically, and [0.4, 5.6] meters in depth. Each cell has side
lengths of 0.025 meters. Altogether this yields a volumetric representation of size
208× 100× 208.

We implemented our model in tensorflow, and trained it on two NVIDIA Tesla
P100, each with 16GB memory. We used mini-batches containing one image at each
iteration. For each batch, we sampled negative anchors in a ratio of 1.2 w.r.t. the
positive anchors, with the pos/neg labels assigned according to the rules of [Song
and Xiao, 2016]. We set the initial learning rate to 0.001 and decreased it at a rate
of 0.5 every 2 epochs. The final network was selected using a validation set of 50
images, which was taken out of the standard training set. In our experiments, we
trained our model for at most 15 epochs. Training our deep network takes roughly
10 hours, and inference takes 2.72s per image on average.

4.4.1 Baselines

As mentioned before, this work constitutes the first attempt to tackle the problem
of generating class-independent 3D box proposals from a single monocular image.
Therefore, we developed our own baselines by making use of the state-of-the-art
monocular depth estimation network of [Eigen and Fergus, 2015] (with all three
scales, compared to two scales in our framework), followed by the state-of-the-art
depth-based 3D proposal generation method of [Song and Xiao, 2016]. We further
designed a baseline inspired by the effective faster R-CNN framework of [Ren et al.,
2015]. In practice, we trained the baselines using mini-batches of the same size as
ours, and an initial learning rate of 0.001. We discuss these baselines in more detail
below.

4.4.1.1 Est-DSS

The original DSS framework [Song and Xiao, 2016] consists of a class-independent
multi-scale region proposal network trained on the accurate TSDF representations of
input depth maps. To work in our monocular setting, we replace the ground-truth
depth maps with those predicted by the three scale model of [Eigen et al., 2014]. DSS
relies on the accurate TSDF, computed from the true nearest neighbor of each voxel.
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To better understand the accuracy loss incurred by relying on the projective TSDF in
our model, we further developed another baseline, named Est-DSS-Approx, where
we replaced the accurate TSDF with our approximate one within the DSS framework.

4.4.1.2 Est-Faster-RCNN

Another approach consists of directly predicting 3D bounding boxes from the 2D
image. To develop a baseline that works in this setting, we made use of the state-of-
the-art faster R-CNN 2D detection framework of [Ren et al., 2015]. More precisely, we
modified this framework to regress 3D coordinates from 2D anchors. To nonetheless
exploit depth information, we extracted HHA features [Gupta et al., 2014a] from the
depth predictions. These features, in conjunction with color images, acted as input
to train the proposal generation part of the faster R-CNN. Specifically, we placed
12 different 2D anchors at each node on the image grid. For each anchor, we then
regress the depth of its 3D box center, the coordinates of the 2D projection of the box
center, and its height, width and length in 3D space, relative to the anchor center
and size, similarly to Eq. (4.7). As in our framework, the orientation of each box was
estimated according to the global orientation of the scene.

In particular, let us denote by [X∗, Y∗, Z∗, H∗, L∗, W∗], [x∗, y∗], [xa, ya, wa, ha] the
parameters of a ground-truth box, 2D projections of the box center, and the parame-
ters of a 2D anchor. Let f be the focal length of the camera. The regression targets,
[t∗x, t∗y, Z∗, t∗h, t∗w, t∗l ], are computed as

t∗x =
x∗ − xa

wa
, t∗y =

y∗ − ya

ha

t∗w = log(
W∗/Z∗

wa/ f
), t∗h = log(

H∗/Z∗

ha/ f
), t∗l = log(

L∗/Z∗

ha/ f
)

(4.9)

Let us denote by [tx, ty, th, tw, tl , Z] the predictions, where Z is the predicted depth
at 3D box center. We make use of the following loss function for training

Lreg− f aster−rcnn = Lcls + γ[(log Z∗ − log Z)2 + ∑
i∈ŝ

r(t∗i − ti)]

with ŝ = {x, y, h, w, l} ,
(4.10)

where the first term is a classification loss similar to that in Eq. (4.8), and the remain-
ing part is the regression loss.

4.4.2 Evaluation Metrics

We evaluate the accuracy of 3D object proposals by calculating their recall, according
to a volume overlap with ground-truth larger than 0.25, and their average box overlap
(ABO) with the ground-truth. Note that, in NYUv2, the ground-truth consists of
3D box parameters in the world referential with a tilt rotation calculated from the
ground-truth depth. Since, in our monocular setting, we cannot have access to the
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methods bathtub bed bookshelf box chair counter desk
Est-Faster-RCNN 33.3 84.5 59.8 9.9 82.1 84.6 82.9
Est-DSS-Approx 70.8 94.8 44.8 10.6 83.8 92.3 79.4
Est-DSS 75.0 95.5 49.4 10.6 85.3 84.6 84.4
Ours 70.8 93.5 34.5 15.6 87.4 92.3 82.9
methods dresser door nightstand lamp pillow monitor bin
Est-Faster-RCNN 76.4 4.9 70.8 34.5 27.3 8.3 45.8
Est-DSS-Approx 83.6 4.9 81.3 27.2 17.9 4.2 30.5
Est-DSS 90.9 11.8 79.2 23.6 24.1 0.00 37.3
Ours 83.6 5.9 81.3 20.0 48.3 25.0 37.3

sink sofa table tv toilet Recall ABO
Est-Faster-RCNN 53.2 81.2 80.4 24.2 93.3 62.3 0.319
Est-DSS-Approx 71.4 90.6 89.7 21.2 96.7 63.6 0.346
Est-DSS 72.7 92.0 91.8 27.3 96.7 66.1 0.348
ours 85.7 89.9 89.7 33.3 93.3 69.3 0.364

Table 4.2: Comparison of our model with the baselines on NYUv2. We show the
class-wise recalls, overall recall and ABO of the 2000 top scored 3D windows on
test set. Note that our model outperforms the two-stage baselines and the faster
R-CNN one in both overall recall and ABO, thus showing the benefits of having an

end-to-end learning framework.
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Figure 4.3: Recall as a function of the IoU threshold. Note that our approach
outperforms the two-stage baselines, or performs on par with them, across the whole
range of IoU thresholds, while the best performing baseline varies for low and high

IoUs. This evidences the stability of our approach.
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methods recall ABO #Box
DSS 84.9 0.461 2000
3D Selective Search 74.2 0.409 2000
Ours 69.3 0.364 2000

Table 4.3: Comparison to depth-based models on NYUv2. We compare our model
with methods based on ground-truth depth. Note that the gap between our model
and these depth-based ones is relatively small, despite the fact that we rely only on

a monocular image as input.

ground-truth tilt rotation, we estimate it using the initial depth estimates obtained
from the network of [Eigen et al., 2014].

4.4.3 Experimental Results

We now present our results on the NYUv2 dataset. In Table 4.2, we first compare
our complete model with the three baselines introduced above. For all methods,
we selected the 2000 3D bounding boxes with highest score to calculate the recall
and ABO. Our model significantly outperforms the baselines in terms of both recall
and ABO, thus showing the importance of end-to-end training and the effectiveness
of our residual volumetric prediction approach at compensating the errors in depth
prediction and due to the TSDF approximation. Even though we tackle the problem
of generating class-independent 3D object proposals, we also report the recall for
each of the 19 object categories present in the dataset. Note that our model more
effectively handles classes of small objects, such as sink, monitor and pillow, which
are typically more challenging to detect. This, we believe, demonstrates that, while
generic, our end-to-end training mechanism allows us to learn effective class-specific
representations automatically. A qualitative comparison of our model with the best-
performing Est-DSS baseline on a few images is provided in Figure 4.4.

Note also that exploiting volumetric representations, as done by Est-DSS, Est-
DSS-Approx and our approach, seems to be more effective than direct regression to
3D as in our Est-Faster-RCNN baseline, which yields the least accurate proposals.
We believe that this is due to the fact that the volumetric representation is better
suited to capture the shape of 3D objects and their distances in 3D space. Finally,
by comparing Est-DSS-Approx and Est-DSS, we can see that, as expected, the pro-
jective TSDF approximation yields worse results. Note, however, that our residual
framework manages to compensate for this loss of accuracy, as better evidenced in
the ablation study below.

In Figure 4.3, we plot the recall as a function of the IoU threshold for our method
and the two-stage baselines. Note that we generally outperform, or perform on
par with, the baselines on the whole range of IoU values. Note also that the best
performing baseline differs for low and high IoU thresholds. This, we believe, further
demonstrates the stability of our model.
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Figure 4.4: Qualitative comparison of our model with Est-DSS on NYUv2. We
show the proposals with highest IoU returned by our model and by the baseline.
The results of our model are shown in green, those of the baseline in dashed blue
and the ground-truth boxes in red. Note that our proposals better match the ground-

truth ones.
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End-to-End Acc.TSDF Res. Path Ext. Anchors Depth Loss Recall ABO
63.6 0.346

3 66.1 0.348
3 3 65.7 0.356

3 3 3 54.7 0.298
3 3 3 66.3 0.360
3 3 3 67.4 0.356
3 3 3 3 69.3 0.364

Table 4.4: Ablation study on NYUv2. We evaluate the influence of different compo-
nents of our framework. Here, "End-to-End" indicates whether a model is end-to-end
trained, and "Res. Path" indicates whether it has the residual path. Note that our
residual volumetric prediction module is able to effectively compensate for our use
of an approximate TSDF representation, and can be further improved by the use of
our extended anchors, which, by contrast, have only little effect on the two-stage

baseline.

4.4.3.1 Comparison to Depth-based Models

In Table 4.3, we compare our results with those of depth-based models, i.e., DSS [Song
and Xiao, 2016] and 3D selective search [Uijlings et al., 2013], whose results were ob-
tained using the implementation by [Song and Xiao, 2016]. While our model, which
relies only on an RGB image as input, yields slightly worse results that these meth-
ods that exploit ground-truth depth, the gap is remarkably small; e.g., we achieve
only 4.9% lower recall than 3D selective search. Considering the strong ambiguities
of depth estimation from a monocular image, we believe that this small gap shows
the effectiveness of our monocular 3D box proposal model.

4.4.3.2 Ablation Study

In addition to the previous baseline comparison, we perform a comprehensive analy-
sis of the impact of the different components of our approach. In particular, we eval-
uate the importance of (i) making our framework end-to-end trainable; (ii) relying
on the accurate TSDF compared to the approximate one; (iii) our residual network
for volumetric prediction; (iv) our extended anchors; (v) the use of the depth loss as
intermediate supervision.

The results of this ablation study are provided in Table 4.4. In short, we can
see that (i) our residual volumetric prediction is able to compensate for the loss in
accuracy incurred by the use of the projective TSDF; (ii) Our extended anchors help
further boost the accuracy of our model, while they only have little effect when
used in conjunction with the two-stage baseline; (iii) depth supervision is important
for our model, as it ensures that the input to our volumetric prediction remains
meaningful. In our experiments, we set the weight of the depth loss λ to 1. We
found, however, that our results were robust to this value, as long as it is sufficiently
large. For example, with λ = 10, our model still outperforms the baseline with a
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(a) (b) (c) (d)

Figure 4.5: Example of predicted depth. (a) input image; (b) ground-truth depth;
(c) initial depth estimate [Eigen and Fergus, 2015]; and (d) depth estimate from our
model. Even though our depth estimates are not globally more accurate than the
initial ones, it better separates the foreground objects from the background, where

we label the object with a red rectangle, as can be seen in (b).

recall of 67.4 and an ABO of 0.359. Interestingly, we have observed that our depth
estimates, while not globally more accurate than the initial ones, better separate the
foreground objects from the background, as in the example in Figure 4.5. This seems
natural since we aim to generate proposals for the foreground objects. Altogether,
we believe that this ablation study clearly evidences the strengths of the different
components of our approach.

4.4.3.3 Generalization of our Model

To demonstrate the generality of our approach, we make use of the SUN-RGBD
dataset [Song et al., 2015] to test our model and the Est-DSS baseline. The SUN-
RGBD dataset consists of 5050 test images, including some from the NYUv2 dataset.
For this evaluation to be more meaningful, we do not fine-tune the models, and
explicitly exclude the NYUv2 images from the test set, thus leaving us with 4395
images. In practice, since the image size of SUN-RGBD changes, we simply resize
them all to the size of the NYUv2 images, i.e., [427,561]. Furthermore, to adjust the
camera intrinsic matrix to the new image size, we multiply the focal lengths and the
principle point by the ratio of the NYUv2 image size to the original SUN-RGBD size
of each input image.

The results of this experiment are provided in Table 4.5. Our model achieves a
performance similar to that on the NYUv2 dataset. Furthermore, it outperforms the
baseline in both overall recall and ABO, shows the ability of our model to generalize
to new data. Specifically, we outperform the baseline on 10 out of the 19 categories in
the dataset, with a large margin on objects of small sizes. The qualitative comparison
of our model with the baseline is provided in Figure 4.6.

For completeness, we also report the results of our approach on the complete
SUN-RGBD test set, including the images from NYUv2. This corresponds to a recall
of 68.1% and an ABO of 0.354, both of which are slightly higher than our results on
the previous SUN-RGBD subset.
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methods bathtub bed bookshelf box chair counter desk
Est-DSS 75.0 87.9 51.6 21.9 66.5 76.5 73.6
Ours 64.3 89.5 40.0 24.1 72.1 75.2 77.3
methods dresser door nightstand lamp pillow monitor bin
Est-DSS 69.6 11.2 60.0 24.5 25.0 18.0 44.1
Ours 55.4 10.2 46.5 14.7 34.1 27.0 51.8

sink sofa table tv toilet Recall ABO
Est-DSS 64.5 84.3 81.9 27.6 90.0 64.1 0.328
ours 69.3 82.1 84.7 31.0 85.0 67.9 0.353

Table 4.5: Generalization study on SUN-RGBD excluding NYUv2. We evaluate our
model and a baseline model, both trained on NYUv2, on a subset of SUN-RGBD
excluding the images from NYUv2. Our model remains more effective than the

baseline on this data, thus evidencing the generality of our approach.

4.4.3.4 Failure cases

Even though our model performs dramatically better than the baselines, it still surfers
inaccuracy due to depth estimation and the scene orientation estimation. Since we
use the global orientation of scene, obtained by a pre-processing procedure, to model
the rotations of all objects in the scene, the 3D box proposals can become inaccurate
if the orientation is estimated poorly, or if the objects are not aligned to the room.
Examples of failure cases are shown in Figure 4.7.

4.5 Conclusion

We have introduced an end-to-end method to generate class-independent 3D ob-
ject proposals from a single monocular image. To the best of our knowledge, this
constitutes the first attempt to work in this challenging setting for complex indoor
scenes. Our experiments have demonstrated that our residual, fully-differentiable
TSDF module produces an effective volumetric representation to generate box pro-
posals, thus outperforming the two-stage approach based on the standard, non-
differentiable TSDF. We have found that depth supervision was beneficial to our
model. Importantly, however, our model does not require accurate depth on all parts
of the image. In particular, the accuracy of the background depth is unimportant
since we focus on foreground objects. For future work, it could therefore be interest-
ing to modify the depth loss to focus more strongly on the foreground objects, and
to estimate the orientation of each object individually.
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Figure 4.6: Qualitative comparison of our model with Est-DSS on SUN-RGBD
excluding NYUv2. We show the proposals with highest IoU returned by our model
and by the baseline. The results of our model are shown in green, those of the
baseline in dashed blue and the ground-truth boxes in red. In addition, we rotate the

scene for better visualization of these 3D boxes.
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Figure 4.7: Failure examples. (a),(g) input images; (b),(h) ground-truth depth; (c),(i)
estimated depth; (d),(j) estimated 3D reconstruction; and (e),(k) proposals of our
method (green), the baseline (blue), and ground-truth (red). In the first example,
because of the similar appearance of the foreground (pillow) and the background
(bed), depth cannot be predicted accurately. Inaccurate depth estimation leads to
the failure of our method as well as of the baseline. In the second example, the
inaccurate estimation of the global scene orientation, used for box orientations, leads

to inaccurate 3D box proposals.
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Chapter 5

Indoor Scene Parsing with
Instances, Semantics and their
Supports

In the previous chapters, we analyzed scenes by estimating detailed depth maps,
and 3D object boxes. For a comprehensive scene representation and understanding,
in this chapter, we parse a scene into meaningful regions corresponding to instances,
estimating their semantics, and predicting their support relationships. We perform
these tasks based on a single monocular image, and, as in Chapter 4, make use of
depth predictions. Depth predictions provide important information for predicting
support relationships, and improving instance segmentation over previous methods
which are blind to this information. In practice, these tasks have many applications.
In particular, instances and semantics can facilitate a computer or robot to better un-
derstand a scene or the surrounding environment, and in the end to implement its
ultimate target, e.g, navigation. The support relationships provide important infor-
mation for a robot to grasp and place objects.

For the scene parsing task mentioned above, we propose an integrated model to
solve the three subtasks, i.e., instance segmentation, semantic labeling, and support
relationship inference simultaneously. Existing methods have typically focused on
diverse subtasks of this challenging problem. In particular, while some of them aim
at segmenting the image into regions, such as object instances, others aim at inferring
the semantic labels of given regions, or their support relationships. These different
tasks are typically treated as separate ones. However, they bear strong connections:
good regions should respect the semantic labels; support can only be defined for
meaningful regions; support relationships strongly depend on semantics. In this
chapter, we therefore introduce an approach to jointly learn the three sub-tasks. By
exploiting a hierarchical segmentation, we formulate our problem as that of jointly
finding the regions in the hierarchy that correspond to instances and estimating their
class labels and pairwise support relationships. We express this via a Markov Ran-
dom Field, which allows us to further encode links between the different types of
variables. Inference in this model can be done via integer linear programming, and
we learn its parameters in a structural SVM framework.

61
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Figure 5.1: Our scene parsing framework for instance segmentation, semantic label-
ing and support relationship inference based on a segment hierarchy. Each node in
the hierarchy graph indicates a region/segment, and an edge connecting two nodes

in different layers indicates that one region includes the other.

Below, we first introduce the motivation and our idea in Section 5.1, and review
the related work in Section 5.2. We then describe our model in detail in Section 5.3,
and evaluate it in Section 5.4. We conclude this chapter in Section 5.5.

5.1 Introduction

Indoor scene understanding is one of the core challenges in computer vision. It aims
at providing detailed information about the objects in a scene, such as their type and
how they interact with each other. Such a level of understanding could have a high
impact in many applications, such as personal robotics, where, to be able to interact
with objects, one needs to reason about their semantics and how they are placed
relative to each other.

In essence, indoor scene parsing is a complex problem that consists of multiple
subtasks, such as segmenting the scene into meaningful regions [Arbeláez et al., 2014;
Gupta et al., 2013; Shi and Malik, 2000], e.g., object instances, predicting semantic la-
bels for every pixel in the scene [Long et al., 2015; Eigen and Fergus, 2015; Zheng
et al., 2015] and reasoning about the support relationships of different regions [Jia
et al., 2013; Guo and Hoiem, 2013; Silberman et al., 2012a; Yang et al., 2017]. In the
literature, with the exception of [Silberman et al., 2014] that jointly reasons about
regions and semantics, existing approaches typically tackle these subtasks indepen-
dently. These subtasks, however, truly are strongly connected. For instance, the
support relationship of two regions is highly correlated with their semantics; reason-
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ing about support can be facilitated by using semantically meaningful regions. By
addressing these tasks separately, or sequentially, existing methods cannot leverage
the full collective power of all these dependencies.

In this chapter, we therefore introduce an approach to jointly segment the object
instances and infer their semantic labels and support relationships in an indoor scene
from a single input image. To this end, we exploit a hierarchical segmentation and
formulate our problem as that of finding the regions corresponding to instances in
this hierarchy, while simultaneously predicting a semantic label for each such region
and the support relationship between any pair of such regions. We jointly express
these subtasks in a single Conditional Random Field (CRF). This allows us to effec-
tively encode the dependencies between them, thus leveraging all the connections
underlying our overall problem.

We perform inference in the resulting CRF by formulating it as an integer linear
programming problem. To cope with the size of this problem, we propose to make
use of a regressor trained to predict the overlap of each region with a ground-truth
object instance to effectively prune the region candidates. Thanks to the efficiency
of this reduced inference strategy, we can learn the parameters of our model using
structural Support Vector Machines (SVM). To this end, we design a loss function that
reflects the multi-task nature of our indoor scene parsing formalism. Our framework
is illustrated in Figure 5.1.

We demonstrate the effectiveness of our approach on the NYUv2 dataset [Silber-
man et al., 2012a]. Our experiments evidence that accounting for the dependencies
between regions, their semantics and their support helps improving the prediction
of the corresponding variables, with a particularly high impact on support relation-
ships.

5.2 Related Work

Indoor scene understanding has been an important research focus in the computer
vision community. As discussed above, this challenging problem consists of multiple
subtasks. In particular, here, we tackle the tasks of instance segmentation, semantic
labeling and support relationship prediction. We therefore focus on reviewing work
in the three sub-categories.

5.2.1 Segmentation of Instances and Semantics

Segmenting an image into regions has attracted a huge interest over the years [Ar-
belaez et al., 2011; Arbeláez et al., 2014; Comaniciu and Meer, 2002; Shi and Malik,
2000], and often acts as a pre-processing step for some high-level recognition tasks.
A complete review of this literature goes beyond the scope of this chapter. Here, we
briefly discuss the methods that have been used for indoor scene understanding. In
this context, the most direct approach consists of using standard over-segmentation
methods, such as SLIC [Achanta et al., 2012], Mean-Shift [Comaniciu and Meer, 2002]
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and normalized-cut [Shi and Malik, 2000]. In [Ladickỳ et al., 2014], multiple over-
segmentations were employed jointly for monocular normal estimation. By contrast,
many approaches favor exploiting hierarchical segmentations [Arbelaez et al., 2011;
Arbeláez et al., 2014; Gupta et al., 2013; Hoiem et al., 2011]. While some works then
select specific levels in this hierarchy, such as [Ren et al., 2012] and our work in
Chapter 3, others aim to automatically find the best active regions in it, e.g., that fit
the image contours [Hoiem et al., 2011], or whose pixel intensities follow a Gaussian
distribution [Hu et al., 2015].

In particular, for instance segmentation, it is straightforward to build a model se-
lecting regions that best match instances in the hierarchical segmentation [Silberman
et al., 2014]. In an orthogonal research line, some work learned detailed instance
directly using deep neural networks [Dai et al., 2016; Ren and Zemel, 2017].

Traditionally, semantic segmentation methods also often relied on pre-defined
image regions [Ren et al., 2012; Silberman et al., 2012a; Gupta et al., 2013; Tighe and
Lazebnik, 2010]. The motivation behind this was both computational cost and ro-
bustness to noise. Indeed, early approaches to semantic segmentation often relied on
CRFs, in which inference can be computationally expensive when working at pixel
level. Furthermore, working with regions allows one to regularize the predictions
spatially. With the recent advent of deep learning, and progress in efficient infer-
ence methods [Koltun, 2011], many approaches now work directly at the level of
pixels [Long et al., 2015; Eigen and Fergus, 2015; Zheng et al., 2015; Zhao et al., 2017].
[Long et al., 2015] introduced a fully convolution neural network (FCNN) which re-
placed the fully connected layers of typical DCNN models with convolutional layers
and a bilinear upsampling, and thus enabling pixel-wise prediction independent of
the input resolution. [Zheng et al., 2015] stacked this FCNN with a recurrent neural
network approximating the conditional random field (CRF) inference. CRF explicitly
models long-range links within a scene, which can sharpen the semantic boundary
and smooth the predictions within a segment. A contemporary work [Chen et al.,
2015] proposed an efficient deep structured learning strategy that unified the learn-
ing of CNN features and a graphical model. Motivated by this idea, some work
stacked multiple CRF on different scales of features [Lin et al., 2016]. In the context
of DCNN, [Zhao et al., 2017] achieved impressive performance on scene segmenta-
tion by introducing the technique of pyramid pooling, consisting of spatial poolings
with large, diverse strides, that effectively extracts the global contextual information.

5.2.2 Region Relationship Inference

By contrast, when it comes to estimating support relationships, the notion of regions
remains necessary. The task of estimating support was first introduced in [Silberman
et al., 2012a], where a hierarchical segmentation was used to predict two support
relationships: support from below, or from behind between pairs of regions. In this
context, [Guo and Hoiem, 2013] predicts the height and extent of surfaces that can
support objects or people. In [Jia et al., 2013] , instead of 2D segments, support is
defined between 3D boxes. More recently, [Yang et al., 2017] proposed to make use
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of object classes and physical stability to reason about support relationships between
regions. All these methods make use of an RGBD image as input. By contrast, in this
chapter, we aim to predict support from a single, standard RGB image.

More importantly, most of the methods discussed above tackle a single subtask
of the challenging indoor scene understanding problem. The only two exceptions we
are aware of are [Silberman et al., 2014], which jointly selects active regions in a hi-
erarchy and predicts their semantic label; and [Silberman et al., 2012a], which jointly
reasons about semantics and support relationships. Both of these works, however,
also make use of RGBD as input. By contrast, we aim to jointly segment the ob-
ject instances and infer their semantics and their support relationships from a single
RGB image. To the best of our knowledge, our work constitutes the first attempt at
considering all three subtasks together.

5.3 Methodology

Our goal is to jointly solve three sub-problems of indoor scene understanding, i.e.,
instance segmentation, semantic labeling and support relationship prediction, so as
to account for their dependencies. To this end, we make use of a segmentation hier-
archy, obtained by the method of [Gupta et al., 2013]. Our problem then translates
to that of selecting the regions that best match ground-truth instances in this hier-
archy, predicting their semantic label and their pairwise support relationships. We
express this as inference in a CRF with three types of nodes: region selection ones,
semantic label ones and support relationships ones. The edges in the model encode
the dependencies between these variables.

More specifically, let us assume to be given a hierarchy of R regions forming
a tree. To select the active regions in this tree, we define a set of binary variables
A = {ai}R

i=1 , ai ∈ {0, 1}. Furthermore, let M = {Mi}R
i=1 , Mi ∈ {1, . . . , K} be

the set of semantic labeling variables defining the class to which a region belongs,
for K semantic classes. We then define an additional set of variables to model the
support relationships between any two regions. To this end, let Sij denote the type
of support that region j provides to region i. Following [Silberman et al., 2012a],
we consider three different cases: No support (Sij = 0); j supports i from below
(Sij = 1); j supports i from behind (Sij = 2). Note that we will often refer jointly to
the latter two types as positive support, as opposed to the first type that corresponds
to negative support. Furthermore, we introduce a hidden region to model the fact
that some regions may be supported by a region that is not visible in the image.
Altogether, the support variables can be expressed as S = {Sij}R

i=1,j=0 , Sij ∈ {0, 1, 2},
where j = 0 corresponds to support by the hidden region.

We then formulate the problem of jointly inferring these three types of variables
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as that of maximizing the function

E(A, M, S) =
R

∑
i=1

φa(ai) +
R

∑
i=1

φma(Mi, ai) + φtree(A)

+
R

∑
i=1

R

∑
j=0

φs(Sij) +
R

∑
i=1

R

∑
j=0

φsa(Sij, ai, aj)

(5.1)

with respect to A, M and S, which can equivalently be converted to minimizing a
CRF energy. The function relies on several potentials, which we discuss below.

The first term φr(ai) is a unary potential encoding the probability that region i is
active. We define this potential as φr(ai) = wT

a f a
i [ai = 1], where [·] is the indicator

function, thus setting this potential to zero when ai = 0. The vector f a
i is a feature

vector defined in Section 5.3.3, and wa is the corresponding parameter vector to be
learned from data.

The potential φma(Mi, ai) encodes the probability of predicting a particular se-
mantic label for region i if the region is active. Simultaneously, it assigns a fixed cost
to inactive regions. This can be expressed as

φma(Mi, ai) =

{
0 ai = 0

wT
ma:Mi

f ma
i ai = 1

(5.2)

where f ma
i is a feature vector, which, as described in Section 5.3.3, links semantics

and support relationships. The vector wma:Mi contains the parameters corresponding
to each class Mi and will be learned from data.

The potential φtree(A) enforces constraints on the set of active regions. For the
segmentation to be valid, every pixel in the image should be covered by a single
region. This is achieved by making sure that only one region is selected in every
path from the root of the segmentation hierarchy to a leaf node, such as the path in
red in Figure 5.1. To this end, we thus define φtree(A) = ∑γ∈Γ−∞[1 6= ∑i∈γ[ai = 1]],
where Γ is the set of all root-to-leaf paths in the tree.

The unary potential φs(Sij) encodes the probability of a support variable to belong
to either of the three classes. We write this potential as

φs(Sij) = wT
s:Sij

f s
ij , (5.3)

where f s
ij is a feature vector, which, as described in Section 5.3.3, links support types

and semantics. The parameter vector ws:Sij for each class Sij will also be learned.

Finally, φsa(Sij, ai, aj) is a higher-order potential encoding the dependencies be-
tween the support variables and the region selection ones. We define this potential
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as

φsa(Sij, ai, aj) = wsa
wT

b f sa
ij , Sij 6= 0∧ (ai = 0∨ aj = 0)]

wT
c f sa

ij , Sij 6= 0, ai = 1, aj = 1

0, otherwise ,

(5.4)

where f sa
ij is a feature vector on a pair of regions, as described in Section 5.3.3. The

vector wb contains the parameters corresponding to the scenario where we predict a
positive relationships even though either region is inactive, and wc is the parameter
vector for the case where both regions are active and we predict a positive relation-
ship. Typically, we would like to penalize the first case and favor the second one.
Other cases are assigned a fixed cost of zero.

5.3.1 Inference

To perform the inference in our model, we propose to re-write it as an integer linear
program (ILP). To this end, let a ∈ B2R+1 be a vector of binary variables representing
the states of A, where ai,1 = 1 encodes the fact that region i is active, while ai,0 = 1
corresponds to an inactive region i. Here, we add an extra variable a0,1 = 1 cor-
responding to the hidden region and forcing it to always be active. Furthermore,
m = {mi,k} , 1 ≤ i ≤ R , 0 ≤ k ≤ K, denotes binary variables encoding the pairwise
state space of M and A, where mi,0 represents the case where ai = 0 for an arbitrary
Mi, and mi,k 6=0 corresponds to the pairwise state ai = 1 and Mi = k. Additionally,
let s = {si,j,t∈{0,1,2}} encode the state of the support relationship variables, and z
the triplet states corresponding to the higher-order term φsa(Sij, ai, aj), where zi,j,l ,
l ∈ {1, 2, 3}, corresponds to the three cases in Eq. (5.4).

Inference in our model can then be re-written as the binary linear program

argmax
a,m,s,z

R

∑
i=1

θa
i ai,1 +

R

∑
i=1

K

∑
k=0

θm
i,kmi,k+

R

∑
i=1

R

∑
j=0

2

∑
t=0

θs
i,j,tsi,j,t +

R

∑
i=1

R

∑
j=0

3

∑
l=1

θsa
i,j,kzi,j,l

(5.5)

subject to

ai,l , mi,u, si,j,t zi,j,l ∈ {0, 1} ∀i, l, j, t, u, v

a0,1 = 1 ,
(5.6)

ai,0 + ai,1 = 1, ∀i (5.7)

∑K
k=0 mi,k = 1, ∀i (5.8)

mi,0 = ai,0, ∀i (5.9)

(5.10)
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∑2
t=0 si,j,t = 1, ∀i, j (5.11)

∑3
l=1 zi,j,l = 1, ∀i, j (5.12)

∑i∈γ ai,1 = 1, ∀γ ∈ Γ (5.13)

∑t∈{1,2} ∑R
j=0 si,j,t ≥ ai,1, ∀i (5.14)

∑t∈{1,2}(si,0,t + si,j,t) ≤ ai,1, ∀i, j 6= 0 (5.15)

si,0,1 ≥ mi,1, ∀i (5.16)

zi,j,2 = si,j,0, ∀i, j (5.17)

zi,j,3 ≤ ∑2
t=1 si,j,t, ∀i, j (5.18)

zi,j,3 ≤ ai,1, ∀i, j (5.19)

zi,j,3 ≤ aj,1, ∀i, j (5.20)

zi,j,3 ≥ ∑2
t=1 si,j,t + ai,1 + aj,1 − 2, ∀i, j, (5.21)

where the θ··s encode the different potentials described above. The constraints can be
interpreted as follows: Eqs. (5.7) – (5.12) enforce the binary variables to correspond
to valid predictions. Eq. (5.13) enforces the tree constraints on the region selection
variables. Eq. (5.14) forces a region to be supported by at least one region when it
is active. This constraint encodes the fact that there is no floating region in the real
world. Eq. (5.15) prevents a region to be supported by the hidden region if there is
a region in the scene that can support it. Eq. (5.16) forces a region to be supported
by the hidden region if its semantic label is ground (semantic class 1 in our case).
Eq. (5.17) – (5.21) enforce the binary variables z to correspond to one of the three
cases in Eq. (5.4). To solve this ILP, we make use of Gurobi.

Speeding up inference. While Gurobi is very efficient, it remains too slow for us
to handle our typical hierarchies, which contain roughly 200 regions. To address this
issue, we therefore propose to first prune the regions. This procedure follows two
steps. First, we remove the regions that contain less than 625 pixels, which, based
on our statistics, are unlikely to correspond to object instances. Second, we exploit
a regressor trained to predict the Intersection over Union (IoU) between a region in
the hierarchy and a ground-truth instance. To this end, we make use of a neural
network with three fully-connected layers, intertwined with ReLU activation, batch
normalization, and dropout. An overiew of deep learning techniques, including the
different layers of the types mentioned above, is provided in Section 2.2. This net-
work is depicted by Fig. 5.2. We use deep features in conjunction with hand-crafted
geometric ones as input to this shallow IoU regression network. See Section 5.3.3
for more detail about these features. We train this network using the square loss
between the true IoU and the predicted one. To this end, we use batches of size 256,
a learning rate of 10−3 and a momentum of 0.95. The dropout rate was set to 0.5. We
also subsample the data so as to have a roughly balanced training set. To this end,
we discretize the IoU interval [0, 1] into 10 bins, and subsample the data such that
each bin contains roughly the same number of samples. At test time, we keep the 80
regions with highest predicted IoU that satisfy the constraint that each root-to-leaf
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Figure 5.2: Architecture of our IoU regressor. We make use of a network with three
fully-connected layers to predict the IoU between a candidate region and a ground-
truth object instance. We use ReLU activation, batch normalization and dropout after

the first and second layers.

path in the segmentation tree contains at least one region. In practice, this pruning
yields less than 1% decrease in oracle weighted coverage, while greatly reducing the
number of regions.

After pruning, we then train a two-class support classifier on the remaining re-
gions to predict positive or negative support. We make use of this classifier to prune
support pairs. To this end, we threshold the classifier score so as to obtain a high
recall of positive support. In practice, we achieve 94% recall, while reducing from
5600 to 1100 pairs.

5.3.2 Learning

Given training data, we aim to learn the parameters of our model. One of the chal-
lenges of learning comes from the fact that, typically, the ground-truth object in-
stances that we seek to predict do not appear in our hierarchical segmentation. To
reflect what will happen at test time, however, we would like to learn our model
using the noisy segments from the hierarchies obtained from the training images. To
this end, following [Silberman et al., 2014], we rely on an oracle segmentation. Below,
we first explain how these oracle segmentations are obtained, and then discuss our
learning algorithm.

5.3.2.1 Oracle Segmentation

The goal of oracle segmentation is to find among the regions in a noisy hierarchical
segmentation those that best match ground-truth object instances and correspond to
a valid tree cut, i.e., cover the image without redundancy. To this end, we make
use of the ILP formulation of [Silberman et al., 2014]. This formulation relies on
two kinds of binary variables. The first ones are equivalent to our region selection
variables a = {ai,l} , 1 ≤ i ≤ R , l ∈ {0, 1}, discussed above. The second kind
of variables encode the mapping between ground-truth instances and segments in
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the hierarchy. Let us denote these variables as o ∈ BG×R, with G the number of
ground-truth instances.

An oracle segmentation can then be obtained by solving the optimization problem

argmin
a,o

G

∑
g=1

R

∑
i=1

θo
g,iog,i (5.22)

subject to

ai,l , og,k ∈ {0, 1}, ∀i, l, g, k, (5.23)

ai,0 + ai,1 = 1, ∀i, (5.24)

∑
i∈γ

ai,1 = 1, ∀γ ∈ Γ (5.25)

og,i ≤ ai,1, ∀g, i, (5.26)
R

∑
i=1

og,i = 1, ∀g, (5.27)

og,i + aj,1 ≤ 1, ∀g, i, j,

if IoU(rg, rj) > IoU(rg, ri)
(5.28)

where IoU(·, ·) denotes the intersection over union between two regions, and

θg,i =
|Lrg |

L (IoU(rg, rs) − IoU(rg, ri)) encodes the amount of weighted coverage lost
by selecting region i instead of s, which corresponds to the best possible match for
ground-truth region g. Most constraints simply force the solution to be valid, with
the Eq. (5.28) guaranteeing that, among the regions that are active, the best one is
assigned to a ground-truth region.

5.3.2.2 Learning via Structural SVM

We now turn to the learning problem per say. As discussed in Section 2.1.2, struc-
tural SVM provides a technique to learn the weights in a CRF. To this end, let
D = {(x(1), y(1)), (x(2), y(2)), ..., (x(N), y(N))} be a set of pairs of images and labels,
where y(n) = {A(n), M(n), S(n)} comprises the best selection of segments from the
segmentation tree, obtained using the oracle segmentation described above, the cor-
responding semantic labels, taken as the dominant label in each region, and support
relationships, described in Section 5.4, for image i.

Our goal is to learn the weights in our CRF. The energy in this CRF can be
equivalently written as wTφ(x, y), where w concatenates all the weights we seek to
learn, and, with a slight abuse of notation, φ(x, y) = [φa, φma, φs, φsa] concatenates the
corresponding features, so as to compute the different potentials. Following a margin
re-scaling structural SVM formulation, learning the weights can be expressed as the
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optimization problem

min
w,ε≤0

1
2

wTw +
λ

N

N

∑
n

εn

s.t. wT[φ(x(n), y(n))− φ(x(n), y)] ≥ 4(y, y(n))− εn, ∀y

where 4(y, y(n)) returns the loss of an arbitrary prediction y compared to the best
configuration.

Here, to reflect the nature of our problem, where we aim to predict different types
of variables jointly, we design the multi-task loss

4 (y, y(n)) =
wls

sup

Q

R

∑
i=1

R

∑
j=0

1[Sij 6= S∗ij]

+ wls
r

1
L ∑

g∈G
Lrg

(
max
i∈A(n)

IoU(rg, r(n)i )

)
− wls

r
1
L ∑

g∈G
Lrg

(
max
i∈Â

IoU(rg, ri)

)
,

(5.29)

where Â is the active set of A, that is, the set of regions such that ai = 1, and similarly
for Â(n) w.r.t. A(n). Lrg is the number of pixels in region g, L is the number of pixels
in all the ground-truth regions in an image, and Q is the number of active pairs in
Â. Here, we use wls

r = 1, wls
sup = 0.5.

Loss-augmented Inference. An important step in structural SVM learning consists
of performing loss-augmented inference to find predictions that have a high loss, but
correspond to a low energy (or rather a high score in our maximization formulation).
This can be expressed as solving

y∗ = argmax
ŷ∈y

4(ŷ, y(n)) + wTφ(x, ŷ) . (5.30)

Translating this into an ILP then yields the problem

argmax
a,m,s,o

R

∑
i=1

θa
i ai,1 +

R

∑
i=1

K

∑
k=0

θm
i,kmi,k +

R

∑
i=1

R

∑
j=0

2

∑
t=0

θs
i,j,tsi,j,t

+
R

∑
i=1

R

∑
j=0

3

∑
l=1

θsa
i,j,kzi,j,l +

G

∑
g=1

R

∑
i=1

θo
g,iog,i +

R

∑
i=1

R

∑
j=0

2

∑
t=0

θsl
i,j,tsi,j,t

(5.31)

subject to the constraints of (5.5) and (5.22). Here, θo
g,i encodes the loss on the regions

and is defined as in (5.22), θsl
i,j,t encodes the hamming loss on support relationships.
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It can thus be written as

θsl
i,j,t =

1
Q

, s.t t 6= S∗ij ∀t ∈ {1, 2, 3} . (5.32)

To learn our model, we use the BCFW solver of [Lacoste-Julien et al., 2013]. Loss-
augmented inference takes 1s per image on average.

5.3.3 Features

As discussed above, the IoU regressor, the support classifier and the potentials of
Eq. (5.1) rely on different types of features. Here, we describe these feature vectors.

The IoU regressor relies on four types of features as input, which we refer to
as Conv5-SP, Pb-SP, Ext-Pb-SP and RGeo. Conv5-SP is obtained from spatially
pooled [He et al., 2014] features coming from the conv5 layer of the FCN-32s model
of [Long et al., 2015] fine-tuned on NYUv2 to predict semantics using RGB and HHA
as input. HHAs were obtained from depth prediction using the method of [Eigen
et al., 2014]. In particular, the HHA records, for each pixel, the horizontal disparity,
height above floor, and the angle of the local surface normal referring to the gravity
direction. Pb-SP and Ext-Pb-SP are derived from the semantic probability maps of
the FCN-32s model mentioned above, using spatial pooling on each region and on a
bounding box of 1.25 the region’s extent around it, respectively. RGeo corresponds
to the geometry features used in [Silberman et al., 2012a]. For the architecture and
parameters of the FCN-32s, please see Section 2.2.2.

The support classifier relies on two types of features. The first concatenates Pb-
SP, Ext-Pb-SP and RGeo for both regions. The second, denoted as PGeo, includes
the containment, geometry and horizontal features of [Silberman et al., 2012a] com-
puted on pairs of regions.

The feature vector f a
i is obtained by concatenating two types of features, which

we refer to as RF and RGeo. RF corresponds to the feature map after the second
batch normalization module in the 3-layer neural network described in Section 5.3.1.
It encodes the connection between the IoU regressor and the selection of the region.

The feature vector f ma
i contains five types of features, denoted by RGeo, Pb-SP,

Ext-Pb-SP, Pb and Hm. The first three have been described above. Pb is defined as
the average over the region pixels of the K-dimensional semantic probability vectors
obtained by the same FCN-32s as above. Hm aims to incorporate dependencies
between semantics and support relationships. To this end, for region i, this feature
is obtained by averaging over all the other regions j the probability of each support
class between i and j, obtained by our SVM support classifier.

The feature vector f s
ij is formed by two feature types, Ps and Pm. Ps is directly

taken as the probabilities predicted by our support classifier. Pm aims at modeling
dependencies between support and semantics. It concatenates the semantic features
Pb discussed above for both regions.

The feature vector f sa
ij concatenates RGeo and RF features for both regions, as

well as the corresponding IoUs predicted by our 3-layer neural network. It further
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includes the feature PGeo described above.

5.4 Experimental Evaluation

We evaluate our model on the NYUv2 dataset, which provides RGB images and their
corresponding depth maps. Note that, here, we do not use these depth maps. The
dataset contains 749 images for training and 654 for testing.

The ground-truth regions, i.e., object instances, and corresponding semantics are
provided by [Silberman et al., 2012a]. The semantics include four classes: ground,
structure, props and objects. Ground-truth support relationships were defined by [Sil-
berman et al., 2014] on the ground-truth regions. Based on the strategy of [Silberman
et al., 2014], we map these ground-truth support relationships to our segmentation
hierarchy [Gupta et al., 2013] as follows: Any pair in which both regions have an IoU
with ground-truth regions greater than 0.25 is assigned the corresponding ground-
truth type. The other regions are assigned the no support label. If, at the end of
this procedure, a region is not supported by any other region, we define it as being
supported by the hidden one.

The computation cost of our model is affordable. The running time for feature
extraction on regions and pairs are 14s and 2.7s per image on average, respectively.
Given the features, the pruning process for pairs takes 3s per image and that for
regions 0.2s. Inference then takes 0.2s per image.

5.4.1 Evaluation Metrics

Since we predict three different types of variables, we need different metrics to eval-
uate them. Here, we use:

Instance segmentation accuracy. To evaluate our segmentation results, we make
use of the maximum weighted coverage, defined over ground-truth regions G and
predicted regions R as

Coveragew(G,R) = 1
|I|

|G|

∑
j=1
|rG

j | max
1,...,|R|

IoU(rG
j , rR

i )

where |I| is the number of pixels in the whole set of ground-truth regions, which
may be less than the total number of pixels in the image, and |rG

j | is number of pixels
in ground-truth region j.

Semantic labeling accuracy. To evaluate the predicted semantics, we make use of
the standard average accuracy computed over all the pixels and per-class accuracy,
where averaging is done over the classes.

Support relationship accuracy. For the support relationships, we evaluate the pre-
cision and recall of the positive support types on pairs not containing the hidden
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region. These values are defined as

precision =
# true positive predictions

# positive predictions
, (5.33)

recall =
# true positive predictions

# of positive samples
. (5.34)

5.4.2 Experimental Results

We now present our results on NYUv2. Since our model addresses multiple tasks,
as a first experiment, we evaluate the influence of several of its components via
an ablation study. To this end, we compare our complete model (Ours) with the
following baselines:
Basic: This baseline only performs instance segmentation and includes the region
unary and tree constraints of Eq. (5.1).
Ours-NS: This model jointly predicts the region selection variables and the seman-
tics. However, it does not account for the support relationships. This model consists
of the first three terms in Eq. (5.1).
Ours-ND: This model also infers the three kinds of variables. It contains all the terms
in Eq. (5.1), but does not leverage the features that link support and semantics, i.e.,
Hm and Ps in Section 5.3.3. In essence, while predicting all variables, this baseline
only models limited dependencies between them. In addition to these baselines, we
also report the support predictions obtained with the linear SVM support classifier
(SC) discussed in Section 5.3.3, which, among others, makes use of features encoding
information about the region IoU with ground-truth and the semantics.

The results of our method and of these baselines are provided in Table 5.2. Note
that some baselines do not predict all the variables, and can thus not be evaluated
according to all the metrics. These results show that (i) jointly predicting regions
and semantics improves the quality of the segments; (ii) predicting all three types
of variables yields performance improvement to the support quality compared to
our support classifier; (iii) modeling the dependencies between the different variable
types further improves the support predictions, particularly in terms of recall. Al-
together, we believe that these results demonstrate the benefits of jointly inferring
regions, semantics and support relationships.

To further evidence the impact of semantics, we performed an experiment where
we used the ground-truth ones in our model. This model is denoted as Ours(GtSem).
This resulted in a 3.1% relative improvement on recall, thus showing that better
semantics yield better support.

In Fig. 5.3, we provide some qualitative results obtained with our approach. Note
that the semantic labels we predict closely match the ground-truth ones. Note also
that, while they contain some degree of over-segmentation, the regions we produce
typically still remain reasonably large, with a clear semantic meaning. Our method
is also able to predict accurate support relationships, even in the presence of many
different objects, as in the last row of the figure. In Fig. 5.4, we show a typical failure
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Model Oracle W. Cov
[Hoiem et al., 2011] 50.7

[Ren and Shakhnarovich, 2013] 50.7
Ours 64.9

Table 5.1: Evaluation of the Segmentation Hierarchies Based on NYUv2 RGB: Here
we compare our segmentation hierarchy with several baselines based on monocu-
lar image only. We evaluate these hierarchies with the weighted coverage of their

corresponding oracle set.

Model W. Cov Sem Avg Acc Sem Per-Cls Acc Sup. Prec Sup. Recall
Basic 58.9 - - - -

SC - - - 44.8 39.0
Ours-NS 59.3 73.0 72.0 - -
Ours-ND 59.3 73.3 72.2 47.0 41.9

Ours 59.4 73.2 72.1 47.6 43.1
Ours(GtSem) 60.1 - - 48.2 45.0

Table 5.2: Evaluation on NYUv2. We compare our approach to several baselines,
mostly corresponding to different components of our complete model, where in
above table "Sup. Prec" represents support precision, and "Sup. Recall" represents
support recall. Note that some of these baselines do not predict all variable types,
and can thus only be evaluated on some metrics. These results demonstrate the im-
portance of jointly inferring multiple variable types, in particular on the quality of

the support relationships.

case of our approach. We have observed that failures mostly occur when a region
is over-segmented, or assigned to the wrong semantic category. Note that this again
indicates the dependencies between these different subtasks of indoor scene parsing.

Furthermore, we compare our segmentation hierarchy with baselines that are
based on monocular image. In contrast to previous monocular image based segmen-
tation hierarchy [Hoiem et al., 2011; Ren and Shakhnarovich, 2013], we generate the
hierarchy utilizing depth predictions [Eigen and Fergus, 2015]. A qualitative com-
parison is shown in Table 5.1. We evalutate the segmentation hierarchies using the
weighted coverage between the ground truth and their corresponding oracle seg-
ments. Note that the results of the baselines were taken from [Silberman et al., 2014].
This comparison demonstrates the higher quality of our hierarchy compared to the
baselines, and the benefits of utilizing depth prediction for our task.

Comparison with RGBD-based methods. As mentioned previously, existing meth-
ods that predict support relationships all work with RGBD images as input. To com-
pare against these methods, we slightly modified our approach to exploit RGBD.
In particular, we generated the hierarchy using ground-truth depth, and employed
ground-truth depth to extract our features, except for the semantic probability ones.
The results in Table 5.4 show again that our model benefits from solving multiple
tasks. Note that, despite the fact that the oracle performance obtained from our seg-
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Image Ground-truth Ours Semantic Instance&Support

Figure 5.3: Qualitative evaluation of our results. We show the input image, the
ground-truth semantics, the semantics predicted by our approach, and our regions
and support predictions. We show the correct relationships in white and the incorrect
ones in black. Support from below is indicated by an arrow head and from behind by
a diamond one. Note that our semantics match the ground-truth ones quite closely.
Furthermore, our regions typically correspond to semantically-meaningful portions
of the scene, that is, complete object instances, and our support corresponds to correct

relationships. (Best viewed in color.)

Image Ground-truth Ours Semantic Instance&Support

Figure 5.4: Failure case. Here, our support relationships are affected by a wrong
semantic labeling.
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Model Oracle W.Cov W. Cov Sem Avg Acc Sem Per-Cls Acc
Basic 68.8 61.1 - -

Ours-NS 68.8 62.8 74.8 73.7
Ours 68.8 62.7 75.3 74.3

[Silberman et al., 2014] 70.6 62.5 - -

Table 5.3: Evaluation on NYUv2 RGBD. We compare our approach to several base-
lines corresponding to different components of our complete model and to the state-
of-the-art methods [Silberman et al., 2014]. Note that, while our oracle weighted
coverage is lower than that of [Silberman et al., 2014], we achieve higher weighted
coverage, thus showing the impact of accounting for the dependencies between mul-

tiple tasks.

Model Support Precision Support Recall
SC 48.3 37.9

Ours 49.5 38.6
[Silberman et al., 2012a] 54.5 -

Table 5.4: Support Evaluation on NYUv2 RGBD. We compare our approach to the
baseline and state-of-the-art corresponding to [Silberman et al., 2012a]. Note that,
Ours evaluates the support relationship on segmentation hierarchy, it is not fair en-
gouth to compare with [Silberman et al., 2012a] which worked on a different fixed

segmentation.

mentation hierarchy is lower than that of [Silberman et al., 2014], the segmentation
obtained by our method has a higher weighted coverage. In other words, since the
gap between our weighted coverage and the oracle one is significantly smaller than
for [Silberman et al., 2014], i.e., 6.1% vs 8.1%, our model essentially selects better
regions than [Silberman et al., 2014]. The comparison to [Silberman et al., 2012a]
for support prediction should be taken with caution, since the regions are different.
We believe that this comparison shows that both method perform similarly, with our
approach providing additional information about the scene. Note that we expect that
exploiting depth more thoroughly than done here could give our approach a bigger
boost.

5.5 Conclusion

In this chapter, we have introduced an approach to jointly segmenting the object in-
stances in an image and predicting their semantic labels and support relationships.
To the best of our knowledge, this constitutes the first attempt at jointly tackling these
three subtasks of the indoor scene understanding problem. Our experiments have
demonstrated that jointly reasoning about these three tasks is in general beneficial,
and particularly so for support relationships. In addition, we also have evidenced
the advantage of utilizing depth prediction for our task. Indoor scene understand-
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ing, however, is not limited to these three tasks. One can, for example, also aim at
predicting depth, surface normals and object affordances. Ultimately, we believe that
all these problems should be tackled jointly to better leverage their dependencies.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The overall goal of this thesis was to understand an indoor scene from a single
monocular image. To this end, we have investigated methods that extract useful
information in 2D and 3D. In Chapter 3, we tackled the task of depth estimation
from a monocular image. Predicted depth enables effective scene understanding in
3D and high quality predictions on related 2D tasks, such as instance segmentation.
Based on depth estimates, we generated 3D object box proposals in Chapter 4, and
tackled the scene parsing task with instance segmentation, semantic labeling and
support relationship inference in 2D in Chapter 5. We summarize the contributions
of each work below.

In Chapter 3, we introduced a novel model that estimates detailed depth maps
by leveraging high-level scene structures. In particular, we introduced a novel hier-
archical representation of the scene which models the scene structure at local, mid-
level, and global scales. Compared to earlier works that reason locally, our approach
achieves dramatically better performance.

In Chapter 4, we designed the first monocular image 3D box proposal network
for indoor scenes with a novel fully differentiable framework, at the core of whose
lies a newly-designed residual, differentiable volumetric representation network.

In Chapter 5, we proposed a novel integrated model acting on segmentation hi-
erarchy for jointly reasoning about three subtasks of scene parsing, i.e., instance
segmentation, semantic prediction of instances, and support relationship inference
on the hierarchy. Here, dependencies of the three subtasks were well exploited. In
this framework, we achieved better instance segmentation and more accurate support
relationship predictions than methods that tackles these subtasks independently.

Overall, contributions of this thesis are: 1) efforts to overcome the difficulties aris-
ing from the ambiguity of depth estimation from a monocular image; 2) exploiting
the dependencies on predicted depth of other scene understanding tasks, such as
3D box proposal generation and instance segmentation; 3) novel methods that beat
existing ones on several 2D and 3D tasks; 4) rich and effective scene representations
at various scales and perspectives.

79
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6.2 Future Work

For comprehensive scene understanding, many tasks remain to be addressed. Below,
we discuss several research directions related to the problem tackled in this thesis.

For depth estimation, in this thesis, we proposed a depth estimation method
based on traditional hand-crafted features and a traditional inference technique. In
the framework of our model, potential improvements can be achieved by exploiting
better CRF potentials. In recent years, however, hand-crafted features have been
replaced by features learned using deep convolutional networks. In this context,
a potential direction for depth estimation could be to exploit other cues that can
faciliate this task, such as CAD models and semantics, and incorporate the additonal
cues in the deep network.

Our 3D box proposal method from a monocular image, it surfers from inaccura-
cies due to imperfect depth estimation, both in global and local range. As a conse-
quence, the direction discussed above for depth estimation may improve monocular-
image 3D box proposal generation. Furthermore, we observed that, in our experi-
ments, the intermediate depth output of our integrated framework mainly focuses
on foreground objects, so as to generate better 3D object proposals. This motivates us
to design a depth estimation loss that pays closer attention to foreground. Since our
3D box proposal generation also suffers from the inaccuracy of the scene orientation
estimate, which we used as orientation for each individual object, the development
of better orientation estimation methods for individual objects can lead to more accu-
rate 3D box proposals. Furthermore, going beyond our framework, we believe that
combinations of 2D and 3D features may lead to better performance. To this end,
motivated by the spatial transformation network of [Jaderberg et al., 2015], we could
learn the model in world coordinates, so as to extract more consistent features for
object of the same category and generate 3D box proposals of better quality. This
network could further be extended for doing proposal generation and object detec-
tion.

For our task of scene parsing, we exploited three related scene parsing subtasks
in an intergrated graphical model. A potential avenue for future research would be
to incorporate other related tasks. In particular, we trained the features for different
potentials and the structural SVM in two independent stages. It would therefore
be interesting to investigate the effect of joint learning for depth estimation, feature
extraction, and prediction on the three subtasks.
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