330 research outputs found

    Graphene under the influence of Aharonov-Bohm flux and constant magnetic field

    Get PDF
    Investigation of real two-dimensional systems with Dirac-like electronic behavior under the influence of magnetic field is challenging and leads to many interesting physical results. In this paper we study 2D graphene model with a particular form of magnetic field as a superposition of a homogeneous field and an Aharonov-Bohm vortex. For this configuration, electronic wave functions and energy spectrum were obtained and it was shown that the magnetic Aharonov-Bohm vortex plays the role of a charge impurity. As a demonstration of vacuum properties of the system, vacuum current, as well as an electric current, is calculated and their representation for particular limiting cases of magnetic field is obtained

    Bismuth ferrite as low-loss switchable material for plasmonic waveguide modulator

    Get PDF
    We propose new designs of plasmonic modulators, which can be utilized for dynamic signal switching in photonic integrated circuits. We study performance of plasmonic waveguide modulator with bismuth ferrite as an active material. The bismuth ferrite core is sandwiched between metal plates (metal-insulator-metal configuration), which also serve as electrodes so that the core changes its refractive index under applied voltage by means of partial in-plane to out-of-plane reorientation of ferroelectric domains in bismuth ferrite. This domain switch results in changing of propagation constant and absorption coefficient, and thus either phase or amplitude control can be implemented. Efficient modulation performance is achieved because of high field confinement between the metal layers, as well as the existence of mode cut-offs for particular values of the core thickness, making it possible to control the signal with superior modulation depth. For the phase control scheme, {\pi} phase shift is provided by 0.8-{\mu}m length device having propagation losses 0.29 dB/{\mu}m. For the amplitude control, we predict up to 38 dB/{\mu}m extinction ratio with 1.2 dB/{\mu}m propagation loss. In contrast to previously proposed active materials, bismuth ferrite has nearly zero material losses, so bismuth ferrite based modulators do not bring about additional decay of the propagating signal

    From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers

    Get PDF
    We theoretically investigate general existence conditions for broadband bulk large-wavevector (high-k) propagating waves (such as volume plasmon polaritons in hyperbolic metamaterials) in subwavelength periodic multilayer structures. Describing the elementary excitation in the unit cell of the structure by a generalized resonance pole of a reflection coefficient, and using Bloch's theorem, we derive analytical expressions for the band of large-wavevector propagating solutions. We apply our formalism to determine the high-k band existence in two important cases: the well-known metal-dielectric, and recently introduced graphene-dielectric stacks. We confirm that short-range surface plasmons in thin metal layers can give rise to hyperbolic metamaterial properties, and demonstrate that long-range surface plasmons cannot. We also show that graphene-dielectric multilayers tend to support high-k waves and explore the range of parameters for which this is possible, confirming the prospects of using graphene for materials with hyperbolic dispersion. The approach is applicable to a large variety of structures, such as continuous or structured microwave, terahertz (THz) and optical metamaterials.Comment: 9 pages, 5 figure

    Photonic band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials

    Get PDF
    We theoretically study the propagation of large-wavevector waves (volume plasmon polaritons) in multilayer hyperbolic metamaterials with two levels of structuring. We show that when the parameters of a subwavelength metal-dielectric multilayer ("substructure") are modulated ("superstructured") on a larger, wavelength scale, the propagation of volume plasmon polaritons in the resulting multiscale hyperbolic metamaterials is subject to photonic band gap phenomena. A great degree of control over such plasmons can be exerted by varying the superstructure geometry. When this geometry is periodic, stop bands due to Bragg reflection form within the volume plasmonic band. When a cavity layer is introduced in an otherwise periodic superstructure, resonance peaks of the Fabry-Perot nature are present within the stop bands. More complicated superstructure geometries are also considered. For example, fractal Cantor-like multiscale metamaterials are found to exhibit characteristic self-similar spectral signatures in the volume plasmonic band. Multiscale hyperbolic metamaterials are shown to be a promising platform for large-wavevector bulk plasmonic waves, whether they are considered for use as a new kind of information carrier or for far-field subwavelength imaging.Comment: 12 pages, 10 figures, now includes Appendix

    Transition absorption as a mechanism of surface photoelectron emission from metals

    Get PDF
    Transition absorption of electromagnetic field energy by an electron passing through a boundary between two media with different dielectric permittivities is considered both classically and quantum mechanically. It is shown that transition absorption can make a substantial contribution to the process of electron photoemission from metals due to the surface photoelectric effect.Comment: 4 pages, 3 figure

    Chiral dynamics in QED and QCD in a magnetic background and nonlocal noncommutative field theories

    Full text link
    We study the connection of the chiral dynamics in QED and QCD in a strong magnetic field with noncommutative field theories (NCFT). It is shown that these dynamics determine complicated nonlocal NCFT. In particular, although the interaction vertices for electrically neutral composites in these gauge models can be represented in the space with noncommutative spatial coordinates, there is no field transformation that could put the vertices in the conventional form considered in the literature. It is unlike the Nambu-Jona-Lasinio (NJL) model in a magnetic field where such a field transformation can be found, with a cost of introducing an exponentially damping form factor in field propagators. The crucial distinction between these two types of models is in the characters of their interactions, being short-range in the NJL-like models and long-range in gauge theories. The relevance of the NCFT connected with the gauge models for the description of the quantum Hall effect in condensed matter systems with long-range interactions is briefly discussed.Comment: 19 pages, REVTeX4, v2: clarifications added, v3: to match PRD versio
    • …
    corecore