4 research outputs found

    Table_1_Development of a rapid quantitative method to differentiate MS1 vaccine strain from wild-type Mycoplasma synoviae.DOCX

    No full text
    Mycoplasma synoviae (MS) is an economically important pathogen in the poultry industry. Vaccination is an effective method to prevent and control MS infections. Currently two live attenuated MS vaccines are commercially available, the temperature-sensitive MS-H vaccine strain and the NAD-independent MS1 vaccine strain. Differentiation of vaccine strains from wild-type (WT) strains is crucial for monitoring MS infection, especially after vaccination. In this study, we developed a Taqman duplex real-time polymerase chain reaction (PCR) method to identify MS1 vaccine strains from WT strains. The method was specific and did not cross-react with other avian pathogens. The sensitivity assay indicated that no inhibition occurred between probes or between mixed and pure templates in duplex real-time PCR. Compared with the melt-based mismatch amplification mutation assay (MAMA), our method was more sensitive and rapid. In conclusion, the Taqman duplex real-time PCR method is a useful method for the diagnosis and differentiation of WT-MS and MS1 vaccine strains in a single reaction.</p

    Table_3_Development of a rapid quantitative method to differentiate MS1 vaccine strain from wild-type Mycoplasma synoviae.DOCX

    No full text
    Mycoplasma synoviae (MS) is an economically important pathogen in the poultry industry. Vaccination is an effective method to prevent and control MS infections. Currently two live attenuated MS vaccines are commercially available, the temperature-sensitive MS-H vaccine strain and the NAD-independent MS1 vaccine strain. Differentiation of vaccine strains from wild-type (WT) strains is crucial for monitoring MS infection, especially after vaccination. In this study, we developed a Taqman duplex real-time polymerase chain reaction (PCR) method to identify MS1 vaccine strains from WT strains. The method was specific and did not cross-react with other avian pathogens. The sensitivity assay indicated that no inhibition occurred between probes or between mixed and pure templates in duplex real-time PCR. Compared with the melt-based mismatch amplification mutation assay (MAMA), our method was more sensitive and rapid. In conclusion, the Taqman duplex real-time PCR method is a useful method for the diagnosis and differentiation of WT-MS and MS1 vaccine strains in a single reaction.</p

    Table_2_Development of a rapid quantitative method to differentiate MS1 vaccine strain from wild-type Mycoplasma synoviae.DOCX

    No full text
    Mycoplasma synoviae (MS) is an economically important pathogen in the poultry industry. Vaccination is an effective method to prevent and control MS infections. Currently two live attenuated MS vaccines are commercially available, the temperature-sensitive MS-H vaccine strain and the NAD-independent MS1 vaccine strain. Differentiation of vaccine strains from wild-type (WT) strains is crucial for monitoring MS infection, especially after vaccination. In this study, we developed a Taqman duplex real-time polymerase chain reaction (PCR) method to identify MS1 vaccine strains from WT strains. The method was specific and did not cross-react with other avian pathogens. The sensitivity assay indicated that no inhibition occurred between probes or between mixed and pure templates in duplex real-time PCR. Compared with the melt-based mismatch amplification mutation assay (MAMA), our method was more sensitive and rapid. In conclusion, the Taqman duplex real-time PCR method is a useful method for the diagnosis and differentiation of WT-MS and MS1 vaccine strains in a single reaction.</p

    Data_Sheet_1_Drug resistance patterns and genotype associations of Trichomonas gallinae in meat pigeons (Columba livia): insights from Guangdong Province, China.DOCX

    No full text
    Avian trichomoniasis, caused by the protozoan parasite Trichomonas gallinae, is a prevalent and economically significant disease in pigeons. This study investigated the drug resistance of T. gallinae isolates in Guangdong Province, China. The results revealed that 25.3% (20/79) of the isolates were resistant to one or more of the four nitroimidazole drugs tested, namely, metronidazole, dimetridazole, secnidazole, and tinidazole. Secnidazole elicited the highest resistance rate (19.0%; 15/79), followed by tinidazole (17.7%; 14/79), metronidazole (17.7%; 14/79), and dimetridazole (13.9%; 11/79). An enormous majority of the resistant isolates (70.0%; 14/20) exhibited resistance to multiple drugs. Additionally, the resistance rate was significantly higher in isolates from birds aged < 30 days (53.3%; 8/15) than in those from older birds (23.1%; 12/52). Moreover, no drug resistance was detected in female pigeons. The genotype of the isolated strain was also associated with drug resistance. Specifically, 50.0% (15/30) of ITS-B genotypes exhibited resistance to drugs, while only 10.2% (5/49) of ITS-A genotypes demonstrated resistance. This study also found the growth characteristics of different Trichomonas isolates to be influenced by their genotypes and initial inoculum concentrations. These findings underscore the urgent need for effective measures to control and prevent drug-resistant T. gallinae infections in pigeons, thus ensuring the stable development of the pigeon industry.</p
    corecore