15,675 research outputs found
Low-momentum Pion Enhancement Induced by Chiral Symmetry Restoration
The thermal and nonthermal pion production by sigma decay and its relation
with chiral symmetry restoration in a hot and dense matter are investigated.
The nonthermal decay into pions of sigma mesons which are popularly produced in
chiral symmetric phase leads to a low-momentum pion enhancement as a possible
signature of chiral phase transition at finite temperature and density.Comment: 3 pages, 2 figure
Thermal and Nonthermal Pion Enhancements with Chiral Symmetry Restoration
The pion production by sigma decay and its relation with chiral symmetry
restoration in a hot and dense matter are investigated in the framework of the
Nambu-Jona-Lasinio model. The decay rate for the process sigma -> 2pion to the
lowest order in a 1/N_c expansion is calculated as a function of temperature T
and chemical potential mu. The thermal and nonthermal enhancements of pions
generated by the decay before and after the freeze-out present only in the
crossover region of the chiral symmetry transition. The strongest nonthermal
enhancement is located in the vicinity of the endpoint of the first-order
transition.Comment: Latex2e, 12 pages, 8 Postscript figures, submitted to Phys. Rev.
Active optical clock based on four-level quantum system
Active optical clock, a new conception of atomic clock, has been proposed
recently. In this report, we propose a scheme of active optical clock based on
four-level quantum system. The final accuracy and stability of two-level
quantum system are limited by second-order Doppler shift of thermal atomic
beam. To three-level quantum system, they are mainly limited by light shift of
pumping laser field. These limitations can be avoided effectively by applying
the scheme proposed here. Rubidium atom four-level quantum system, as a typical
example, is discussed in this paper. The population inversion between
and states can be built up at a time scale of s.
With the mechanism of active optical clock, in which the cavity mode linewidth
is much wider than that of the laser gain profile, it can output a laser with
quantum-limited linewidth narrower than 1 Hz in theory. An experimental
configuration is designed to realize this active optical clock.Comment: 5 page
BEC-BCS Crossover in the Nambu--Jona-Lasinio Model of QCD
The BEC-BCS crossover in QCD at finite baryon and isospin chemical potentials
is investigated in the Nambu--Jona-Lasinio model. The diquark condensation in
two color QCD and the pion condensation in real QCD would undergo a BEC-BCS
crossover when the corresponding chemical potential increases. We determined
the crossover chemical potential as well as the BEC and BCS regions. The
crossover is not triggered by increasing the strength of attractive interaction
among quarks but driven by changing the charge density. The chiral symmetry
restoration at finite temperature and density plays an important role in the
BEC-BCS crossover. For real QCD, strong couplings in diquark and vector meson
channels can induce a diquark BEC-BCS crossover in color superconductor, and in
the BEC region the chromomagnetic instability is fully cured and the ground
state is a uniform phase.Comment: 18 pages, 15 figures. V2: typos corrected, references added. V3:
typos in Appendix B correcte
Neutrino Emission From Direct Urca Processes in Pion Condensed Quark Matter
We study neutrino emission from direct Urca processes in pion condensed quark
matter. In compact stars with high baryon density, the emission is dominated by
the gapless modes of the pion condensation which leads to an enhanced
emissivity. While for massless quarks the enhancement is not remarkable, the
emissivity is significantly larger and the cooling of the condensed matter is
considerably faster than that in normal quark matter when the mass difference
between - and -quarks is sizable.Comment: 12 pages,6 figures, published versio
Paramagnetic Meissner Effect and Finite Spin Susceptibility in an Asymmetric Superconductor
A general analysis of Meissner effect and spin susceptibility of a uniform
superconductor in an asymmetric two-component fermion system is presented in
nonrelativistic field theory approach. We found that, the pairing mechanism
dominates the magnetization property of superconductivity, and the asymmetry
enhances the paramagnetism of the system. At the turning point from BCS to
breached pairing superconductivity, the Meissner mass squared and spin
susceptibility are divergent at zero temperature. In the breached pairing state
induced by chemical potential difference and mass difference between the two
kinds of fermions, the system goes from paramagnetism to diamagnetism, when the
mass ratio of the two species increases.Comment: 17pages, 2 figures, published in Physical Review
Pion condensation in quark matter with finite baryon density
The phase structure of the Nambu -- Jona-Lasinio model at zero temperature
and in the presence of baryon- and isospin chemical potentials is investigated.
It is shown that in the chiral limit and for a wide range of model parameters
there exist two different phases with pion condensation. In the first, ordinary
phase, quarks are gapped particles. In the second, gapless pion condensation
phase, there is no energy cost for creating only - or both and
quarks, and the density of baryons is nonzero.Comment: 7 pages, 6 figures; two references adde
Mgb2 Nonlinear Properties Investigated under Localized High RF Magnetic Field Excitation
In order to increase the accelerating gradient of Superconducting Radio
Frequency (SRF) cavities, Magnesium Diboride (MgB2) opens up hope because of
its high transition temperature and potential for low surface resistance in the
high RF field regime. However, due to the presence of the small superconducting
gap in the {\pi} band, the nonlinear response of MgB2 is potentially quite
large compared to a single gap s-wave superconductor (SC) such as Nb.
Understanding the mechanisms of nonlinearity coming from the two-band structure
of MgB2, as well as extrinsic sources, is an urgent requirement. A localized
and strong RF magnetic field, created by a magnetic write head, is integrated
into our nonlinear-Meissner-effect scanning microwave microscope [1]. MgB2
films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor
deposition technique on dielectric substrates, are measured at a fixed location
and show a strongly temperature-dependent third harmonic response. We propose
that at least two mechanisms are responsible for this nonlinear response, one
of which involves vortex nucleation and penetration into the film. [1] T. M.
Tai, X. X. Xi, C. G. Zhuang, D. I. Mircea, S. M. Anlage, "Nonlinear Near-Field
Microwave Microscope for RF Defect Localization in Superconductors", IEEE
Trans. Appl. Supercond. 21, 2615 (2011).Comment: 6 pages, 6 figure
Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China ? interpretations of atmospheric measurements during EAST-AIRE
International audienceBlack carbon, brown carbon, and mineral dust are three of the most important light absorbing aerosols. Their optical properties differ greatly and are distinctive functions of the wavelength of light. Most optical instruments that quantify light absorption, however, are unable to distinguish one type of absorbing aerosol from another. It is thus instructive to separate total absorption from these different light absorbers to gain a better understanding of the optical characteristics of each aerosol type. During the EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) campaign near Beijing, we measured light scattering using a nephelometer, and light absorption using an aethalometer and a particulate soot absorption photometer. We also measured the total mass concentrations of carbonaceous (elemental and organic carbon) and inorganic particulates, as well as aerosol number and mass distributions. We were able to identify periods during the campaign that were dominated by dust, biomass burning, fresh (industrial) chimney plumes, other coal burning pollution, and relatively clean (background) air for Northern China. Each of these air masses possessed distinct intensive optical properties, including the single scatter albedo and Ångstrom exponents. Based on the wavelength-dependence and particle size distribution, we apportioned total light absorption to black carbon, brown carbon, and dust; their mass absorption efficiencies at 550 nm were estimated to be 9.5, 0.5, and 0.03 m2/g, respectively. While agreeing with the common consensus that BC is the most important light absorber in the mid-visible, we demonstrated that brown carbon and dust could also cause significant absorption, especially at shorter wavelengths
- …
