7,215 research outputs found

    Magnetic reconnection at the earliest stage of solar flux emergence

    Full text link
    On 2016 September 20, the Interface Region Imaging Spectrograph observed an active region during its earliest emerging phase for almost 7 hours. The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory observed continuous emergence of small-scale magnetic bipoles with a rate of ∼\sim1016^{16} Mx~s−1^{-1}. The emergence of magnetic fluxes and interactions between different polarities lead to frequent occurrence of ultraviolet (UV) bursts, which exhibit as intense transient brightenings in the 1400 \AA{} images. In the meantime, discrete small patches with the same magnetic polarity tend to move together and merge, leading to enhancement of the magnetic fields and thus formation of pores (small sunspots) at some locations. The spectra of these UV bursts are characterized by the superposition of several chromospheric absorption lines on the greatly broadened profiles of some emission lines formed at typical transition region temperatures, suggesting heating of the local materials to a few tens of thousands of kelvin in the lower atmosphere by magnetic reconnection. Some bursts reveal blue and red shifts of ∼\sim100~km~s−1^{-1} at neighboring pixels, indicating the spatially resolved bidirectional reconnection outflows. Many such bursts appear to be associated with the cancellation of magnetic fluxes with a rate of the order of ∼\sim1015^{15} Mx~s−1^{-1}. We also investigate the three-dimensional magnetic field topology through a magneto-hydrostatic model and find that a small fraction of the bursts are associated with bald patches (magnetic dips). Finally, we find that almost all bursts are located in regions of large squashing factor at the height of ∼\sim1 Mm, reinforcing our conclusion that these bursts are produced through reconnection in the lower atmosphere.Comment: ApJ, 10 figure

    Triple condensate halo from water droplets impacting on cold surfaces

    Full text link
    Understanding the dynamics in the deposition of water droplets onto solid surfaces is of importance from both fundamental and practical viewpoints. While the deposition of a water droplet onto a heated surface is extensively studied, the characteristics of depositing a droplet onto a cold surface and the phenomena leading to such behavior remain elusive. Here we report the formation of a triple condensate halo observed during the deposition of a water droplet onto a cold surface, due to the interplay between droplet impact dynamics and vapor diffusion. Two subsequent condensation stages occur during the droplet spreading and cooling processes, engendering this unique condensate halo with three distinctive bands. We further proposed a scaling model to interpret the size of each band, and the model is validated by the experiments of droplets with different impact velocity and varying substrate temperature. Our experimental and theoretical investigation of the droplet impact dynamics and the associated condensation unravels the mass and heat transfer among droplet, vapor and substrate, offer a new sight for designing of heat exchange devices

    Sub-arcsec Observations of NGC 7538 IRS 1: Continuum Distribution and Dynamics of Molecular Gas

    Full text link
    We report new results based on the analysis of the SMA and CARMA observations of NGC 7538\,IRS\,1 at 1.3 and 3.4 mm with sub-arcsec resolutions. With angular resolutions ∼\sim 0\farcs7, the SMA and CARMA observations show that the continuum emission at 1.3 and 3.4 mm from the hyper-compact \ion{H}{2} region IRS\,1 is dominated by a compact source with a tail-like extended structure to the southwest of IRS\,1. With a CARMA B-array image at 1.3 mm convolved to 0\farcs1, we resolve the hyper-compact \ion{H}{2} region into two components: an unresolved hyper-compact core, and a north-south extension with linear sizes of <270<270 AU and ∼\sim2000 AU, respectively. The fine structure observed with CARMA is in good agreement with the previous VLA results at centimeter wavelengths, suggesting that the hyper-compact \ion{H}{2} region at the center of IRS\,1 is associated with an ionized bipolar outflow. We image the molecular lines OCS(19-18) and CH3_3CN(12-11) as well as 13^{13}CO(2-1) surrounding IRS\,1, showing a velocity gradient along the southwest-northeast direction. The spectral line profiles in 13^{13}CO(2-1), CO(2-1), and HCN(1-0) observed toward IRS\,1 show broad redshifted absorption, providing evidence for gas infall with rates in the range of 3−10×10−33-10\times10^{-3} M⊙_\odot yr−1^{-1} inferred from our observations.Comment: 19 pages, 14 figure

    Energy-Efficient Non-Orthogonal Transmission under Reliability and Finite Blocklength Constraints

    Full text link
    This paper investigates an energy-efficient non-orthogonal transmission design problem for two downlink receivers that have strict reliability and finite blocklength (latency) constraints. The Shannon capacity formula widely used in traditional designs needs the assumption of infinite blocklength and thus is no longer appropriate. We adopt the newly finite blocklength coding capacity formula for explicitly specifying the trade-off between reliability and code blocklength. However, conventional successive interference cancellation (SIC) may become infeasible due to heterogeneous blocklengths. We thus consider several scenarios with different channel conditions and with/without SIC. By carefully examining the problem structure, we present in closed-form the optimal power and code blocklength for energy-efficient transmissions. Simulation results provide interesting insights into conditions for which non-orthogonal transmission is more energy efficient than the orthogonal transmission such as TDMA.Comment: accepted by IEEE GlobeCom workshop on URLLC, 201

    Improving Scene Text Image Super-resolution via Dual Prior Modulation Network

    Full text link
    Scene text image super-resolution (STISR) aims to simultaneously increase the resolution and legibility of the text images, and the resulting images will significantly affect the performance of downstream tasks. Although numerous progress has been made, existing approaches raise two crucial issues: (1) They neglect the global structure of the text, which bounds the semantic determinism of the scene text. (2) The priors, e.g., text prior or stroke prior, employed in existing works, are extracted from pre-trained text recognizers. That said, such priors suffer from the domain gap including low resolution and blurriness caused by poor imaging conditions, leading to incorrect guidance. Our work addresses these gaps and proposes a plug-and-play module dubbed Dual Prior Modulation Network (DPMN), which leverages dual image-level priors to bring performance gain over existing approaches. Specifically, two types of prior-guided refinement modules, each using the text mask or graphic recognition result of the low-quality SR image from the preceding layer, are designed to improve the structural clarity and semantic accuracy of the text, respectively. The following attention mechanism hence modulates two quality-enhanced images to attain a superior SR result. Extensive experiments validate that our method improves the image quality and boosts the performance of downstream tasks over five typical approaches on the benchmark. Substantial visualizations and ablation studies demonstrate the advantages of the proposed DPMN. Code is available at: https://github.com/jdfxzzy/DPMN.Comment: Accepted by AAAI-202
    • …
    corecore