8,059 research outputs found

    Statistical and dynamical decoupling of the IGM from Dark Matter

    Full text link
    The mean mass densities of cosmic dark matter is larger than that of baryonic matter by a factor of about 5 in the Ξ›\LambdaCDM universe. Therefore, the gravity on large scales should be dominant by the distribution of dark matter in the universe. However, a series of observations incontrovertibly show that the velocity and density fields of baryonic matter are decoupling from underlying dark matter field. This paper shows our attemps to unveil the physics behind this puzzle. In linear approximation, the dynamics of the baryon fluid is completely governed by the gravity of the dark matter. Consequently, the mass density field of baryon matter ρb(r,t)\rho_b({\bf r},t) will be proportional to that of dark matter ρdm(r,t)\rho_{\rm dm}({\bf r},t), even though they are different from each other initially. In weak and moderate nonlinear regime, the dynamics of the baryon fluid can be sketched by Burgers equation. A basic feature of the Burgers dynamics is to yield shocks. When the Reynolds number is large, the Burgers fluid will be in the state of Burgers turbulence, which consists of shocks and complex structures. On the other hand, the collisionless dark matter may not show such shock, but a multivalued velocity field. Therefore, the weak and moderate nonlinear evolution leads to the IGM-dark matter deviation. Yet, the velocity field of Burgers fluid is still irrotational, as gravity is curl-free. In fully nonlinear regime, the vorticity of velocity field developed, and the cosmic baryonic fluid will no longer be potential, as the dynamics of vorticity is independent of gravity and can be self maintained by the nonlinearity of hydrodynamics. In this case, the cosmic baryon fluid is in the state of fully developed turbulence, which is statistically and dynamically decoupling from dark matter. This scenario provides a mechanism of cohenent explanation of observations.Comment: 21 page

    Indirect unitarity violation entangled with matter effects in reactor antineutrino oscillations

    Full text link
    If finite but tiny masses of the three active neutrinos are generated via the canonical seesaw mechanism with three heavy sterile neutrinos, the 3\times 3 Pontecorvo-Maki-Nakagawa-Sakata neutrino mixing matrix V will not be exactly unitary. This kind of indirect unitarity violation can be probed in a precision reactor antineutrino oscillation experiment, but it may be entangled with terrestrial matter effects as both of them are very small. We calculate the probability of \overline{\nu}_e \to \overline{\nu}_e oscillations in a good analytical approximation, and find that, besides the zero-distance effect, the effect of unitarity violation is always smaller than matter effects, and their entanglement does not appear until the next-to-leading-order oscillating terms are taken into account. Given a 20-kiloton JUNO-like liquid scintillator detector, we reaffirm that terrestrial matter effects should not be neglected but indirect unitarity violation makes no difference, and demonstrate that the experimental sensitivities to the neutrino mass ordering and a precision measurement of \theta_{12} and \Delta_{21} \equiv m^2_2 - m^2_1 are robust.Comment: 21 pages, 6 figures, version to be published in PLB, more discussions adde

    Coupled-channel analysis of the possible D(βˆ—)D(βˆ—)D^{(*)}D^{(*)}, BΛ‰(βˆ—)BΛ‰(βˆ—)\bar{B}^{(*)}\bar{B}^{(*)} and D(βˆ—)BΛ‰(βˆ—)D^{(*)}\bar{B}^{(*)} molecular states

    Get PDF
    We perform a coupled-channel study of the possible deuteron-like molecules with two heavy flavor quarks, including the systems of D(βˆ—)D(βˆ—)D^{(*)}D^{(*)} with double charm, BΛ‰(βˆ—)BΛ‰(βˆ—)\bar{B}^{(*)}\bar{B}^{(*)} with double bottom and D(βˆ—)BΛ‰(βˆ—)D^{(*)}\bar{B}^{(*)} with both charm and bottom, within the one-boson-exchange model. In our study, we take into account the S-D mixing which plays an important role in the formation of the loosely bound deuteron, and particularly, the coupled-channel effect in the flavor space. According to our calculation, the states D(βˆ—)D(βˆ—)[I(JP)=0(1+)]D^{(*)}D^{(*)}[I(J^P)=0(1^+)] and (D(βˆ—)D(βˆ—))s[JP=1+](D^{(*)}D^{(*)})_s[J^P=1^+] with double charm, the states BΛ‰(βˆ—)BΛ‰(βˆ—)[I(JP)=0(1+),0(2+),1(0+),1(1+),1(2+)]\bar{B}^{(*)}\bar{B}^{(*)}[I(J^P)=0(1^+),0(2^+),1(0^+),1(1^+),1(2^+)], (BΛ‰(βˆ—)BΛ‰(βˆ—))s[JP=0+,1+,2+](\bar{B}^{(*)}\bar{B}^{(*)})_s[J^P=0^+,1^+,2^+] and (BΛ‰(βˆ—)BΛ‰(βˆ—))ss[JP=0+,1+,2+](\bar{B}^{(*)}\bar{B}^{(*)})_{ss}[J^P=0^+,1^+,2^+] with double bottom, and the states D(βˆ—)BΛ‰(βˆ—)[I(JP)=0(0+),0(1+)]D^{(*)}\bar{B}^{(*)}[I(J^P)=0(0^+),0(1^+)] and (D(βˆ—)BΛ‰(βˆ—))s[JP=0+,1+](D^{(*)}\bar{B}^{(*)})_s[J^P=0^+,1^+] with both charm and bottom are good molecule candidates. However, the existence of the states D(βˆ—)D(βˆ—)[I(JP)=0(2+)]D^{(*)}D^{(*)}[I(J^P)=0(2^+)] with double charm and D(βˆ—)BΛ‰(βˆ—)[I(JP)=1(1+)]D^{(*)}\bar{B}^{(*)}[I(J^P)=1(1^+)] with both charm and bottom is ruled out.Comment: 1 figure added, published in Physical Review
    • …
    corecore