51,379 research outputs found

    Oil Blending: Mixing and Contamination

    Get PDF
    The Shell Company of Australia has a frequent need to blend lubricants. Blending, sometimes involving three lubricant oils and additives, takes place by jet mixing in large tanks of typically 45,000 titres capacity. The jets are driven by pumps with typical volume throughput of up to 1,000 titres per minute, and typical blending times may be as long as one or two hours. The jet blending process was investigated in a number of ways at the Study Group. These included: simple estimates for blending times, theoretical and experimental description of jet behaviour, development of a simple compartment model for the blending process, and several large scale computer simulations of the jet-induced motion using a commercial Computational Fluid Dynamics package. In addition, the sedimentation of contaminant particles in the tanks was investigated. This overall investigation, using a variety of approaches, gave a good knowledge of the blending process

    Numerical simulations of negative-index refraction in wedge-shaped metamaterials

    Full text link
    A wedge-shaped structure made of split-ring resonators (SRR) and wires is numerically simulated to evaluate its refraction behavior. Four frequency bands, namely, the stop band, left-handed band, ultralow-index band, and positive-index band, are distinguished according to the refracted field distributions. Negative phase velocity inside the wedge is demonstrated in the left-handed band and the Snell's law is conformed in terms of its refraction behaviors in different frequency bands. Our results confirmed that negative index of refraction indeed exists in such a composite metamaterial and also provided a convincing support to the results of previous Snell's law experiments.Comment: 18 pages, 6 figure

    Overall properties of the Gaia DR1 reference frame

    Full text link
    We compare quasar positions of the auxiliary quasar solution with ICRF2 sources using different samples and evaluate the influence on the {\it Gaia} DR1 reference frame owing to the Galactic aberration effect over the J2000.0-J20015.0 period. Then we estimate the global rotation between TGAS with {\it Tycho}-2 proper motion systems to investigate the property of the {\it Gaia} DR1 reference frame. Finally, the Galactic kinematics analysis using the K-M giant proper motions is performed to understand the property of {\it Gaia} DR1 reference frame. The positional comparison between the auxiliary quasar solution and ICRF2 shows negligible orientation and validates the declination bias of ∼\sim−0.1-0.1\mas~in {\it Gaia} quasar positions with respect to ICRF2. Galactic aberration effect is thought to cause an offset ∼\sim0.010.01\mas~of the ZZ axis direction of {\it Gaia} DR1 reference frame. The global rotation between TGAS and {\it Tycho}-2 proper motion systems, obtained by different samples, shows a much smaller value than the claimed value 0.240.24\masyr. For the Galactic kinematics analysis of the TGAS K-M giants, we find possible non-zero Galactic rotation components beyond the classical Oort constants: the rigid part ωYG=−0.38±0.15\omega_{Y_G} = -0.38 \pm 0.15\masyr~and the differential part ωYG′=−0.29±0.19\omega^\prime_{Y_G} = -0.29 \pm 0.19\masyr~around the YGY_G axis of Galactic coordinates, which indicates possible residual rotation in {\it Gaia} DR1 reference frame or problems in the current Galactic kinematical model.Comment: 6 pages, 1 figure. Accepted for publication in A&

    Factorization of the Two Loop Four-Particle Amplitude in Superstring Theory Revisited

    Full text link
    We study in detail the factorization of the newly obtained two-loop four-particle amplitude in superstring theory. In particular some missing factors from the scalar correlators are obtained correctly, in comparing with a previous study of the factorization in two-loop superstring theory. Some details for the calculation of the factorization of the kinematic factor are also presented.Comment: 11 pages, 1 figure; v2, minor corrections and references update

    High-sensing properties of magnetic plasmon resonances in double- and triple-rod structures

    Full text link
    We numerically investigated the magnetic plasmon resonances in double-rod and triple-rod structures (DRSs and TRSs, respectively) for sensing applications. According to the equivalent circuit model, one magnetic plasmon mode was induced in the DRS. Due to the hybridization effect, two magnetic plasmon modes were obtained in the TRS. Compared with the electric plasmon resonance in a single-rod structure (SRS), the electromagnetic fields near the DRS and TRS were much more localized in the dielectric surrounding the structures at the resonance wavelengths. This caused the magnetic plasmon resonance wavelengths to become very sensitive to refractive index changes in the environment medium. As a result, a large figure of merit that is much larger than the electric plasmon modes of SRS could be obtained in the magnetic plasmon modes of DRS and TRS. These magnetic plasmon mode properties enable the use of DRSs and TRSs as sensing elements with remarkable performance
    • …
    corecore