39 research outputs found

    Atomic segregation at twin boundaries in a Mg-Ag alloy

    Get PDF
    Segregation of solute atoms at twin boundaries (TBs) plays a critical role in mechanical properties and thermal stability of magnesium alloys. Here, segregation structures at {10 (1) over bar1}, {10 (1) over bar2} and {10 (1) over bar3} TBs are characterized in a Mg-Ag alloy by means of the atomic resolution high-angle annular dark-field technique based on scanning transmission electron microscopy. Of particular finding is the unique complex segregation at {10 (1) over bar3} TBs, where Ag atoms occupy both substitutional and interstitial sites. By contrast, Ag atoms only substitutionally segregate at {10 (1) over bar1} and {10 (1) over bar2} TBs. Calculation simulation of segregation energy and three-dimensional structure of TBs helps understanding of hybrid segregation. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Extraordinary strain hardening by gradient structure

    Get PDF
    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures.</p

    Partial-Dislocation-Mediated Processes in Nanocrystalline Ni with Nonequilibrium Grain Boundaries

    Get PDF
    The partial-dislocation-mediated processes have so far eluded high-resolution transmission electron microscopy studies in nanocrystalline nc Ni with nonequilibrium grain boundaries. It is revealed that the nc Ni deformed largely by twinning instead of extended partials. The underlying mechanisms including dissociated dislocations, high residual stresses, and stress concentrations near stacking faults are demonstrated and discussed

    Ductility by shear band delocalization in the nano-layer of gradient structure

    Get PDF
    Nanostructured (NS) metals typically fail soon after yielding, starting with the formation of narrow shear bands. Here we report the observation of shear band delocalization in gradient metals. Shear bands were nucleated and delocalized in the NS layers by propagating along the gage length soon after yielding, converting the shear band into a localized strain zone (LSZ). Synergistic work hardening was developed in the LSZ by regaining dislocation hardening capability, and by back-stress hardening from the strain gradients in the axial and depth directions, which helped with enhancing global ductility. [GRAPHICS

    Deformation Twin Formed By Self-Thickening, Cross-Slip Mechanism In Nanocrystalline Ni

    Get PDF
    We report the observation of a deformation twin formed by a recently proposed self-thickening, cross-slip twinning mechanism. This observation verifies one more twinning mechanism, in addition to those reported before, in nanocrystalline face-centered-cubic metals. In this mechanism, once the first Shockley partial is emitted from a grain boundary, and cross slips onto another slip plane, a deformation twin could nucleate and grow in both the primary and cross-slip planes without requiring the nucleation of additional Shockley partials from the grain boundary

    Predictions for Partial-Dislocation-Mediated Processes in Nanocrystalline Ni by Generalized Planar Fault Energy Curves: An Experimental Evaluation

    Get PDF
    Generalized planar fault energy (GPFE) curves have been used to predict partial-dislocation-mediated processes in nanocrystalline materials, but their validity has not been evaluated experimentally. We report experimental observations of a large quantity of both stacking faults and twins in nc Ni deformed at relatively low stresses in a tensile test. The experimental findings indicate that the GPFE curves can reasonably explain the formation of stacking faults, but they alone were not able to adequately predict the propensity of deformation twinning

    New Deformation Twinning Mechanism Generates Zero Macroscopic Strain In Nanocrystalline Metals

    Get PDF
    Macroscopic strain was hitherto considered a necessary corollary of deformation twinning in coarse-grained metals. Recently, twinning has been found to be a preeminent deformation mechanism in nanocrystalline face-centered-cubic (fcc) metals with medium-to-high stacking fault energies. Here we report a surprising discovery that the vast majority of deformation twins in nanocrystalline Al, Ni, and Cu, contrary to popular belief, yield zero net macroscopic strain. We propose a new twinning mechanism, random activation of partials, to explain this unusual phenomenon. The random activation of partials mechanism appears to be the most plausible mechanism and may be unique to nanocrystalline fcc metals with implications for their deformation behavior and mechanical properties

    Back stress strengthening and strain hardening in gradient structure

    Get PDF
    We report significant back stress strengthening and strain hardening in gradient structured (GS) interstitial-free (IF) steel. Back stress is long-range stress caused by the pileup of geometrically necessary dislocations (GNDs). A simple equation and a procedure are developed to calculate back stress basing on its formation physics from the tensile unloading-reloading hysteresis loop. The gradient structure has mechanical incompatibility due to its grain size gradient. This induces strain gradient, which needs to be accommodated by GNDs. Back stress not only raises the yield strength but also significantly enhances strain hardening to increase the ductility. [GRAPHICS]

    Ductility and plasticity of nanostructured metals: differences and issues

    No full text
    Ductility&nbsp;is one of the most important&nbsp;mechanical properties&nbsp;for metallic structural materials. It is measured as the&nbsp;elongation&nbsp;to failure of a sample during standard uniaxial tensile tests. This is problematic and often leads to gross overestimation for nanostructured metals, for which non-standard small samples are typically used. Uniform elongation is a better measure of ductility for small samples because they are less sensitive to sample size. By definition, ductility can be considered as tensile&nbsp;plasticity, but it is often confused with plasticity. In principle, ductility is largely governed by&nbsp;strain hardening&nbsp;rate, which is in turn significantly affected by&nbsp;microstructure, whereas plasticity is primarily controlled by crystal structure or the number of available slip systems to accommodate&nbsp;plastic deformation. In practice, ductility is important for preventing catastrophic failure of structural components during service, whereas plasticity is critical for shaping and forming metals into desired shape and geometry to make structural components. Nanostructured metals typically have high plasticity, but low ductility, due to their low strain hardening capability. Increasing strain hardening rate via modifying microstructure is the primary route to improving ductility.</p

    Perspective on hetero-deformation induced (HDI) hardening and back stress

    No full text
    Heterostructured materials have been reported as a new class of materials with superior mechanical properties, which was attributed to the development of back stress. There are numerous reports on back stress theories and measurements with no consensus. Back stress is developed in soft domains to offset the applied stress, making them appear stronger, while forward stress is developed to make hard domains appear weaker. The extra hardening in heterostructured materials is resulted from interactions between back stresses and forward stresses, and should be described as hetero-deformation induced (HDI) hardening and the measured 'back stress' should be renamed HDI stress. [GRAPHICS] . IMPACT STATEMENT The 'back stress' hardening in the literature can be described more accurately as hetero-deformation induced (HDI) hardening and the measured 'back stress' should be renamed HDI stress
    corecore