53,229 research outputs found
Game Theory Meets Network Security: A Tutorial at ACM CCS
The increasingly pervasive connectivity of today's information systems brings
up new challenges to security. Traditional security has accomplished a long way
toward protecting well-defined goals such as confidentiality, integrity,
availability, and authenticity. However, with the growing sophistication of the
attacks and the complexity of the system, the protection using traditional
methods could be cost-prohibitive. A new perspective and a new theoretical
foundation are needed to understand security from a strategic and
decision-making perspective. Game theory provides a natural framework to
capture the adversarial and defensive interactions between an attacker and a
defender. It provides a quantitative assessment of security, prediction of
security outcomes, and a mechanism design tool that can enable
security-by-design and reverse the attacker's advantage. This tutorial provides
an overview of diverse methodologies from game theory that includes games of
incomplete information, dynamic games, mechanism design theory to offer a
modern theoretic underpinning of a science of cybersecurity. The tutorial will
also discuss open problems and research challenges that the CCS community can
address and contribute with an objective to build a multidisciplinary bridge
between cybersecurity, economics, game and decision theory
Laser Mode Bifurcations Induced by -Breaking Exceptional Points
A laser consisting of two independently-pumped resonators can exhibit mode
bifurcations that evolve out of the exceptional points (EPs) of the linear
system at threshold. The EPs are non-Hermitian degeneracies occurring at the
parity/time-reversal () symmetry breaking points of the threshold
system. Above threshold, the EPs become bifurcations of the nonlinear
zero-detuned laser modes, which can be most easily observed by making the gain
saturation intensities in the two resonators substantially different. Small
pump variations can then switch abruptly between different laser behaviors,
e.g. between below-threshold and -broken single-mode operation.Comment: 4 pages, 3 figure
First principles calculation of lithium-phosphorus co-doped diamond
We calculate the density of states (DOS) and the Mulliken population of the
diamond and the co-doped diamonds with different concentrations of lithium (Li)
and phosphorus (P) by the method of the density functional theory, and analyze
the bonding situations of the Li-P co-doped diamond thin films and the impacts
of the Li-P co-doping on the diamond conductivities. The results show that the
Li-P atoms can promote the split of the diamond energy band near the Fermi
level, and improve the electron conductivities of the Li-P co-doped diamond
thin films, or even make the Li-P co-doped diamond from semiconductor to
conductor. The effect of Li-P co-doping concentration on the orbital charge
distributions, bond lengths and bond populations is analyzed. The Li atom may
promote the split of the energy band near the Fermi level as well as may
favorably regulate the diamond lattice distortion and expansion caused by the P
atom.Comment: 14 pages, 11 figure
- …