34,217 research outputs found

    Robust optical emission polarization in MoS2 monolayers through selective valley excitation

    Full text link
    We report polarization resolved photoluminescence from monolayer MoS2, a two-dimensional, non-centrosymmetric crystal with direct energy gaps at two different valleys in momentum space. The inherent chiral optical selectivity allows exciting one of these valleys and close to 90% polarized emission at 4K is observed with 40% polarization remaining at 300K. The high polarization degree of the emission remains unchanged in transverse magnetic fields up to 9T indicating robust, selective valley excitation.Comment: 5 pages, 3 figure

    Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn_{1-x}CoGe alloys

    Full text link
    It is shown that a temperature window between the Curie temperatures of martensite and austenite phases around the room temperature can be obtained by a vacancy-tuning strategy in Mn-poor Mn1-xCoGe alloys (0 <= x <= 0.050). Based on this, a martensitic transformation from paramagnetic austenite to ferromagnetic martensite with a large magnetization difference can be realized in this window. This gives rise to a magnetic-field-induced martensitic transformation and a large magnetocaloric effect in the Mn1-xCoGe system. The decrease of the transformation temperature and of the thermal hysteresis of the transformation, as well as the stable Curie temperatures of martensite and austenite, are discussed on the basis of the Mn-poor Co-vacancy structure and the corresponding valence-electron concentration.Comment: Manuscript revised. 18 pages, 6 figures and 1 table. Submitted for publication

    Observation of Y(2175) in J/ψ→ηϕf0(980)J/\psi\to \eta\phi f_0(980)

    Full text link
    The decays of J/ψ→ηϕf0(980)(η→γγ,ϕ→K+K−,f0(980)→π+π−)J/\psi\to \eta\phi f_0(980) (\eta\to \gamma\gamma, \phi \to K^+K^-, f_0(980)\to\pi^+\pi^-) are analyzed using a sample of 5.8×1075.8 \times 10^{7} J/ψJ/\psi events collected with the BESII detector at the Beijing Electron-Positron Collider (BEPC). A structure at around 2.182.18 GeV/c2c^2 with about 5σ5\sigma significance is observed in the ϕf0(980)\phi f_0(980) invariant mass spectrum. A fit with a Breit-Wigner function gives the peak mass and width of m=2.186±0.010(stat)±0.006(syst)m=2.186\pm 0.010 (stat)\pm 0.006 (syst) GeV/c2c^2 and Γ=0.065±0.023(stat)±0.017(syst)\Gamma=0.065\pm 0.023 (stat)\pm 0.017 (syst) GeV/c2c^2, respectively, that are consistent with those of Y(2175), observed by the BABAR collaboration in the initial-state radiation (ISR) process e+e−→γISRϕf0(980)e^+e^-\to\gamma_{ISR}\phi f_0(980). The production branching ratio is determined to be Br(J/ψ→ηY(2175))⋅Br(Y(2175)→ϕf0(980))⋅Br(f0(980)→π+π−)=(3.23±0.75(stat)±0.73(syst))×10−4Br(J/\psi\to\eta Y(2175))\cdot Br(Y(2175)\to\phi f_0(980))\cdot Br(f_0(980)\to\pi^+\pi^-)=(3.23\pm 0.75 (stat)\pm0.73 (syst))\times 10^{-4}, assuming that the Y(2175) is a 1−−1^{--} state.Comment: 5 pages, 4 figures, accepted by Phys. Rev. Let

    A Unified Approach to the Classical Statistical Analysis of Small Signals

    Get PDF
    We give a classical confidence belt construction which unifies the treatment of upper confidence limits for null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem (apparently not previously recognized) that the choice of upper limit or two-sided intervals leads to intervals which are not confidence intervals if the choice is based on the data. We apply the construction to two related problems which have recently been a battle-ground between classical and Bayesian statistics: Poisson processes with background, and Gaussian errors with a bounded physical region. In contrast with the usual classical construction for upper limits, our construction avoids unphysical confidence intervals. In contrast with some popular Bayesian intervals, our intervals eliminate conservatism (frequentist coverage greater than the stated confidence) in the Gaussian case and reduce it to a level dictated by discreteness in the Poisson case. We generalize the method in order to apply it to analysis of experiments searching for neutrino oscillations. We show that this technique both gives correct coverage and is powerful, while other classical techniques that have been used by neutrino oscillation search experiments fail one or both of these criteria.Comment: 40 pages, 15 figures. Changes 15-Dec-99 to agree more closely with published version. A few small changes, plus the two substantive changes we made in proof back in 1998: 1) The definition of "sensitivity" in Sec. V(C). It was inconsistent with our actual definition in Sec. VI. 2) "Note added in proof" at end of the Conclusio

    Partial wave analysis of J/psi to p pbar pi0

    Full text link
    Using a sample of 58 million J/ψJ/\psi events collected with the BESII detector at the BEPC, more than 100,000 J/ψ→ppˉπ0J/\psi \to p\bar p \pi^0 events are selected, and a detailed partial wave analysis is performed. The branching fraction is determined to be Br(J/ψ→ppˉπ0)=(1.33±0.02±0.11)×10−3Br(J/\psi \to p \bar p \pi^0)=(1.33 \pm 0.02 \pm 0.11) \times 10^{-3}. A long-sought `missing' N∗N^*, first observed in J/ψ→pnˉπ−J/\psi \to p \bar n \pi^-, is observed in this decay too, with mass and width of 2040−4+3±252040_{-4}^{+3}\pm 25 MeV/c2^2 and 230−8+8±52230_{-8}^{+8}\pm 52 MeV/c2^2, respectively. Its spin-parity favors 3/2+{3/2}^+. The masses, widths, and spin-parities of other N∗N^* states are obtained as well.Comment: Add one author nam

    Measurement of \psip Radiative Decays

    Full text link
    Using 14 million psi(2S) events accumulated at the BESII detector, we report first measurements of branching fractions or upper limits for psi(2S) decays into gamma ppbar, gamma 2(pi^+pi^-), gamma K_s K^-pi^++c.c., gamma K^+ K^- pi^+pi^-, gamma K^{*0} K^- pi^+ +c.c., gamma K^{*0}\bar K^{*0}, gamma pi^+pi^- p pbar, gamma 2(K^+K^-), gamma 3(pi^+pi^-), and gamma 2(pi^+pi^-)K^+K^- with the invariant mass of hadrons below 2.9GeV/c^2. We also report branching fractions of psi(2S) decays into 2(pi^+pi^-) pi^0, omega pi^+pi^-, omega f_2(1270), b_1^\pm pi^\mp, and pi^0 2(pi^+pi^-) K^+K^-.Comment: 5 pages, 4 figure

    Measurements of J/ψJ/\psi and ψ(2S)\psi(2S) decays into ΛΛˉπ0\Lambda \bar{\Lambda}\pi^0 and ΛΛˉη\Lambda \bar{\Lambda}\eta

    Full text link
    Using 58 million J/ψJ/\psi and 14 million ψ(2S)\psi(2S) events collected by the BESII detector at the BEPC, branching fractions or upper limits for the decays J/ψJ/\psi and ψ(2S)→ΛΛˉπ0\psi(2S) \to \Lambda \bar{\Lambda}\pi^0 and ΛΛˉη\Lambda \bar{\Lambda}\eta are measured. For the isospin violating decays, the upper limits are determined to be B(J/ψ→ΛΛˉπ0)<6.4×10−5{\cal B}(J/\psi \to \Lambda \bar{\Lambda}\pi^0)<6.4\times 10^{-5} and B(ψ(2S)→ΛΛˉπ0)<4.9×10−5{\cal B}(\psi(2S) \to \Lambda \bar{\Lambda}\pi^0)<4.9\times 10^{-5} at the 90% confidence level. The isospin conserving process J/ψ→ΛΛˉηJ/\psi \to \Lambda \bar{\Lambda}\eta is observed for the first time, and its branching fraction is measured to be B(J/ψ→ΛΛˉη)=(2.62±0.60±0.44)×10−4{\cal B}(J/\psi \to \Lambda \bar{\Lambda}\eta)=(2.62\pm 0.60\pm 0.44)\times 10^{-4}, where the first error is statistical and the second one is systematic. No ΛΛˉη\Lambda \bar{\Lambda}\eta signal is observed in ψ(2S)\psi(2S) decays, and B(ψ(2S)→ΛΛˉη)<1.2×10−4{\cal B}(\psi(2S) \to \Lambda \bar{\Lambda}\eta)<1.2\times 10^{-4} is set at the 90% confidence level. Branching fractions of J/ψJ/\psi decays into Σ+π−barΛ\Sigma^+ \pi^- bar{\Lambda} and Σˉ−π+Λ\bar{\Sigma}^- \pi^+ \Lambda are also reported, and the sum of these branching fractions is determined to be B(J/ψ→Σ+π−Λˉ+c.c.)=(1.52±0.08±0.16)×10−3{\cal B}(J/\psi \to \Sigma^+\pi^- \bar{\Lambda} + c.c.)=(1.52\pm 0.08\pm 0.16)\times 10^{-3}.Comment: 7 pages, 10 figures. Phys.Rev.D comments considere
    • …
    corecore