62,223 research outputs found

    Failure mechanisms of graphene under tension

    Full text link
    Recent experiments established pure graphene as the strongest material known to mankind, further invigorating the question of how graphene fails. Using density functional theory, we reveal the mechanisms of mechanical failure of pure graphene under a generic state of tension. One failure mechanism is a novel soft-mode phonon instability of the K1K_1-mode, whereby the graphene sheet undergoes a phase transition and is driven towards isolated benzene rings resulting in a reduction of strength. The other is the usual elastic instability corresponding to a maximum in the stress-strain curve. Our results indicate that finite wave vector soft modes can be the key factor in limiting the strength of monolayer materials

    Gauss-Bonnet brane gravity with a confining potential

    Get PDF
    A brane scenario is envisaged in which the mm-dimensional bulk is endowed with a Gauss-Bonnet term and localization of matter on the brane is achieved by means of a confining potential. The resulting Friedmann equations on the brane are modified by various extra terms that may be interpreted as the X-matter, providing a possible phenomenological explanation for the accelerated expansion of the universe. The age of the universe in this scenario is studied and shown to be consistent with the present observational data.Comment: 14 pages, 4 figures, to appear in PR

    Nodal Quasiparticle Lifetimes in Cuprate Superconductors

    Full text link
    A new generation of angular-resolved photoemission spectroscopy (ARPES) measurements on the cuprate superconductors offer the promise of enhanced momentum and energy resolution. In particular, the energy and temperature dependence of the on-shell nodal (k_x=k_y) quasiparticle scattering rate can be studied. In the superconducting state, low temperature transport measurements suggest that one can describe nodal quasiparticles within the framework of a BCS d-wave model by including forward elastic scattering and spin-fluctuation inelastic scattering. Here, using this model, we calculate the temperature and frequency dependence of the on-shell nodal quasiparticle scattering rate in the superconducting state which determines the momentum width of the ARPES momentum distribution curves. For a zero-energy quasiparticle at the nodal momentum k_N, both the elastic and inelastic scattering rate show a sudden decrease as the temperature drops below Tc, reflecting the onset of the gap amplitude. At low temperatures the scattering rate decreases as T^3 and approaches a zero temperature value determined by the elastic impurity scattering. For T>T_c, we find a quasilinear dependence on T. At low reduced temperatures, the elastic scattering rate for the nodal quasiparticles exhibits a quasilinear increase at low energy which arises from elastic scattering processes. The inelastic spin-fluctuation scattering leads to a low energy omega^3 dependence which, for omega>~Delta_0, crosses over to a quasilinear behavior.Comment: 8 pages, 7 figures, minor revision

    Bulk photonic metamaterial with hyperbolic dispersion

    Full text link
    In this work, we demonstrate a self-standing bulk three-dimensional metamaterial based on the network of silver nanowires in an alumina membrane. This constitutes an anisotropic effective medium with hyperbolic dispersion, which can be used in sub-diffraction imaging or optical cloaks. Highly anisotropic dielectric constants of the material range from positive to negative, and the transmitted laser beam shifts both toward the normal to the surface, as in regular dielectrics, and off the normal, as in anisotropic dielectrics with the refraction index smaller than one. The designed photonic metamaterial is the thickest reported in the literature, both in terms of its physical size 1cm x 1cm x 51 mm, and the number of vacuum wavelengths, N=61 at l=0.84 mm.Comment: 6 pages, 4 figur

    Dynamics of Nucleation in the Ising Model

    Full text link
    Reactive pathways to nucleation in a three-dimensional Ising model at 60% of the critical temperature are studied using transition path sampling of single spin flip Monte Carlo dynamics. Analysis of the transition state ensemble (TSE) indicates that the critical nuclei are rough and anisotropic. The TSE, projected onto the free energy surface characterized by cluster size, N, and surface area, S, indicates the significance of other variables in addition to these two traditional reaction coordinates for nucleation. The transmission coefficient along N is ~ 0.35, and this reduction of the transmission coefficient from unity is explained in terms of the stochastic nature of the dynamic model.Comment: In press at the Journal of Physical Chemistry B, 7 pages, 8 figure

    Electrohydrodynamic jet printing of PZT thick film micro-scale structures

    Get PDF
    This paper reports the use of a printing technique, called electrohydrodynamic jet printing, for producing PZT thick film micro-scale structures without additional material removing processes. The PZT powder was ball-milled and the effect of milling time on the particle size was examined. This ball-milling process can significantly reduce the PZT particle size and help to prepare stable composite slurry suitable for the E-Jet printing. The PZT micro-scale structures with different features were produced. The PZT lines with different widths and separations were fabricated through the control of the E-Jet printing parameters. The widths of the PZT lines were varied from 80 μm to 200 μm and the separations were changed from 5 μm to 200 μm. In addition, PZT walled structures were obtained by multi-layer E-Jet printing. The E-Jet printed PZT thick films exhibited a relative permittivity (ɛr) of ∼233 and a piezoelectric constant (d33, f) of ∼66 pC N−1

    A Search for the Near-Infrared Counterpart to GCRT J1745-3009

    Full text link
    We present an optical/near-infrared search for a counterpart to the perplexing radio transient GCRT J1745-3009, a source located ~1 degree from the Galactic Center. Motivated by some similarities to radio bursts from nearby ultracool dwarfs, and by a distance upper limit of 70 pc for the emission to not violate the 1e12 K brightness temperature limit for incoherent radiation, we searched for a nearby star at the position of GCRT J1745-3009. We found only a single marginal candidate, limiting the presence of any late-type star to >1 kpc (spectral types earlier than M9), >200 pc (spectral types L and T0-T4), and >100 pc (spectral types T4-T7), thus severely restricting the possible local counterparts to GCRT J1745-3009. We also exclude any white dwarf within 1 kpc or a supergiant star out to the distance of the Galactic Center as possible counterparts. This implies that GCRT J1745-3009 likely requires a coherent emission process, although whether or not it reflects a new class of sources is unclear.Comment: 10 pages, 5 figures. Accepted for publication in the Astrophysical Journa
    • …
    corecore