10 research outputs found

    Explainable AI using expressive Boolean formulas

    Full text link
    We propose and implement an interpretable machine learning classification model for Explainable AI (XAI) based on expressive Boolean formulas. Potential applications include credit scoring and diagnosis of medical conditions. The Boolean formula defines a rule with tunable complexity (or interpretability), according to which input data are classified. Such a formula can include any operator that can be applied to one or more Boolean variables, thus providing higher expressivity compared to more rigid rule-based and tree-based approaches. The classifier is trained using native local optimization techniques, efficiently searching the space of feasible formulas. Shallow rules can be determined by fast Integer Linear Programming (ILP) or Quadratic Unconstrained Binary Optimization (QUBO) solvers, potentially powered by special purpose hardware or quantum devices. We combine the expressivity and efficiency of the native local optimizer with the fast operation of these devices by executing non-local moves that optimize over subtrees of the full Boolean formula. We provide extensive numerical benchmarking results featuring several baselines on well-known public datasets. Based on the results, we find that the native local rule classifier is generally competitive with the other classifiers. The addition of non-local moves achieves similar results with fewer iterations, and therefore using specialized or quantum hardware could lead to a speedup by fast proposal of non-local moves.Comment: 28 pages, 16 figures, 4 table

    A Transformer Fault Diagnosis Model Based on Chemical Reaction Optimization and Twin Support Vector Machine

    No full text
    The condition monitoring and fault diagnosis of power transformers plays a significant role in the safe, stable and reliable operation of the whole power system. Dissolved gas analysis (DGA) methods are widely used for fault diagnosis, however, their accuracy is limited by the selection of DGA features and the performance of fault diagnosis models, for example, the classical support vector machine (SVM), is easily affected by unbalanced training samples. This paper presents a transformer fault diagnosis model based on chemical reaction optimization and a twin support vector machine. Twin support vector machines (TWSVMs) are used as classifiers for solving problems involving unbalanced and insufficient samples. Restricted Boltzmann machines (RBMs) are used for data preprocessing to ensure the effective identification of feature parameters and improve the efficiency and accuracy of fault diagnosis. The chemical reaction optimization (CRO) algorithm is used to optimize TWSVM parameters to select the optimal training parameters. The cross-validation (CV) method is used to ensure the reliability and generalization ability of the diagnostic model. Finally, the validity of the model is verified using real fault samples and random testing

    Prediction Model for Dissolved Gas Concentration in Transformer Oil Based on Modified Grey Wolf Optimizer and LSSVM with Grey Relational Analysis and Empirical Mode Decomposition

    No full text
    Oil-immersed transformer is one of the most important components in the power system. The dissolved gas concentration prediction in oil is vital for early incipient fault detection of transformer. In this paper, a model for predicting the dissolved gas concentration in power transformer based on the modified grey wolf optimizer and least squares support vector machine (MGWO-LSSVM) with grey relational analysis (GRA) and empirical mode decomposition (EMD) is proposed, in which the influence of transformer load, oil temperature and ambient temperature on gas concentration is taken into consideration. Firstly, GRA is used to analyze the correlation between dissolved gas concentration and transformer load, oil temperature and ambient temperature, and the optimal feature set affecting gas concentration is extracted and selected as the input of the prediction model. Then, EMD is used to decompose the non-stationary series data of dissolved gas concentration into stationary subsequences with different scales. Finally, the MGWO-LSSVM is used to predict each subsequence, and the prediction values of all subsequences are combined to get the final result. DGA samples from two transformers are used to verify the proposed method, which shows high prediction accuracy, stronger generalization ability and robustness by comparing with LSSVM, particle swarm optimization (PSO)-LSSVM, GWO-LSSVM, MGWO-LSSVM, EMD-PSO-LSSVM, EMD-GWO-LSSVM, EMD-MGWO-LSSVM, GRA-EMD-PSO-LSSVM and GRA-EMD-GWO-LSSVM

    ARHGAP21 Is Involved in the Carcinogenic Mechanism of Cholangiocarcinoma: A Study Based on Bioinformatic Analyses and Experimental Validation

    No full text
    Background and Objectives: Rho GTPase-activating protein (RhoGAP) is a negative regulatory element of Rho GTPases and participates in tumorigenesis. Rho GTPase-activating protein 21 (ARHGAP21) is one of the RhoGAPs and its role in cholangiocarcinoma (CCA) has never been disclosed in any publications. Materials and Methods: The bioinformatics public datasets were utilized to investigate the expression patterns and mutations of ARHGAP21 as well as its prognostic significance in CCA. The biological functions of ARHGAP21 in CCA cells (RBE and Hccc9810 cell) were evaluated by scratch assay, cell counting kit-8 assay (CCK8) assay, and transwell migration assay. In addition, the underlying mechanism of ARHGAP21 involved in CCA was investigated by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and the most significant signaling pathway was identified through gene set enrichment analysis (GSEA) and the Western blot method. The ssGSEA algorithm was further used to explore the immune-related mechanism of ARHGAP21 in CCA. Results: The ARHGAP21 expression in CCA tissue was higher than it was in normal tissue, and missense mutation was the main alteration of ARHGAP21 in CCA. Moreover, the expression of ARHGAP21 had obvious differences in patients with different clinical characteristics and it had great prognostic significance. Based on cell experiments, we further observed that the proliferation ability and migration ability of the ARHGAP21-knockdown group was reduced in CCA cells. Several pathological signaling pathways correlated with proliferation and migration were determined by GO and KEGG analysis. Furthermore, the PI3K/Akt signaling pathway was the most significant one. GSEA analysis further verified that ARHGAP21 was highly enriched in PI3K/Akt signaling pathway, and the results of Western blot suggested that the phosphorylated PI3K and Akt were decreased in the ARHGAP21-knockdown group. The drug susceptibility of the PI3K/Akt signaling pathway targeted drugs were positively correlated with ARHGAP21 expression. Moreover, we also discovered that ARHGAP21 was correlated with neutrophil, pDC, and mast cell infiltration as well as immune-related genes in CCA. Conclusions: ARHGAP21 could promote the proliferation and migration of CCA cells by activating the PI3K/Akt signaling pathway, and ARHGAP21 may participate in the immune modulating function of the tumor microenvironment

    Rosuvastatin suppresses TNF-α-induced matrix catabolism, pyroptosis and senescence via the HMGB1/NF-κB signaling pathway in nucleus pulposus cells

    No full text
    Intervertebral disc degeneration is mainly caused by irregular matrix metabolism in nucleus pulposus cells and involves inflammatory factors such as TNF-α. Rosuvastatin, which is widely used in the clinic to reduce cholesterol levels, exerts anti-inflammatory effects, but whether rosuvastatin participates in IDD remains unclear. The current study aims to investigate the regulatory effect of rosuvastatin on IDD and the potential mechanism. In vitro experiments demonstrate that rosuvastatin promotes matrix anabolism and suppresses catabolism in response to TNF-α stimulation. In addition, rosuvastatin inhibits cell pyroptosis and senescence induced by TNF-α. These results demonstrate the therapeutic effect of rosuvastatin on IDD. We further find that HMGB1, a gene closely related to cholesterol metabolism and the inflammatory response, is upregulated in response to TNF-α stimulation. HMGB1 inhibition or knockdown successfully alleviates TNF-α-induced ECM degradation, senescence and pyroptosis. Subsequently, we find that HMGB1 is regulated by rosuvastatin and that its overexpression abrogates the protective effect of rosuvastatin. We then verify that the NF-κB pathway is the underlying pathway regulated by rosuvastatin and HMGB1. In vivo experiments also reveal that rosuvastatin inhibits IDD progression by alleviating pyroptosis and senescence and downregulating HMGB1 and p65. This study might provide new insight into therapeutic strategies for IDD

    Additional file 1 of Unlocking hepatocellular carcinoma aggression: STAMBPL1-mediated TRAF2 deubiquitination activates WNT/PI3K/NF-kb signaling pathway

    No full text
    Additional file 1. Fig S1: A–C. The HCCDB database indicates that STAMBPL1 is significantly highly expressed in HCC. D. Single-cell sequencing data reveals that STAMBPL1 is predominantly highly expressed in HCC. E. The Spatial transcriptomics data demonstrates that STAMBPL1 is predominantly highly expressed in tumor cells. Fig S2: A. Investigating the binding affinity of STAMBPL1 with sorafenib using molecular docking techniques. B. Investigating the binding affinity of STAMBPL1 with Regorafenib using molecular docking techniques. C. Investigating the binding affinity of STAMBPL1 with lenvatinib using molecular docking techniques. D. Investigating the binding affinity of STAMBPL1 with cabozantinib using molecular docking techniques. Fig S3: The graphical abstract to represent overall message of our study
    corecore