2,544 research outputs found

    Ethyl 3-[2-(p-toluene­sulfonamido)phen­yl]acrylate

    Get PDF
    In the title compound, C18H19NO4S, the two benzene rings form a dihedral angle of 52.2 (7)°. The crystal struture is stabilized by N—H⋯O hydrogen bonds, which link the molecules into dimers

    Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A large quantity of nitrogen (N) fertilizer is used for crop production to achieve high yields at a significant economic and environmental cost. Efforts have been directed to understanding the molecular basis of plant responses to N and identifying N-responsive genes in order to manipulate their expression, thus enabling plants to use N more efficiently. No studies have yet delineated these responses at the transcriptional level when plants are grown under chronic N stress and the understanding of regulatory elements involved in N response is very limited.</p> <p>Results</p> <p>To further our understanding of the response of plants to varying N levels, a growth system was developed where N was the growth-limiting factor. An Arabidopsis whole genome microarray was used to evaluate global gene expression under different N conditions. Differentially expressed genes under mild or severe chronic N stress were identified. Mild N stress triggered only a small set of genes significantly different at the transcriptional level, which are largely involved in various stress responses. Plant responses were much more pronounced under severe N stress, involving a large number of genes in many different biological processes. Differentially expressed genes were also identified in response to short- and long-term N availability increases. Putative N regulatory elements were determined along with several previously known motifs involved in the responses to N and carbon availability as well as plant stress.</p> <p>Conclusion</p> <p>Differentially expressed genes identified provide additional insights into the coordination of the complex N responses of plants and the components of the N response mechanism. Putative N regulatory elements were identified to reveal possible new components of the regulatory network for plant N responses. A better understanding of the complex regulatory network for plant N responses will help lead to strategies to improve N use efficiency.</p

    MiRNA-145 increases therapeutic sensibility to gemcitabine treatment of pancreatic adenocarcinoma cells.

    Get PDF
    Pancreatic adenocarcinoma is one of the most leading causes of cancer-related deaths worldwide. Although recent advances provide various treatment options, pancreatic adenocarcinoma has poor prognosis due to its late diagnosis and ineffective therapeutic multimodality. Gemcitabine is the effective first-line drug in pancreatic adenocarcinoma treatment. However, gemcitabine chemoresistance of pancreatic adenocarcinoma cells has been a major obstacle for limiting its treatment effect. Our study found that p70S6K1 plays an important role in gemcitabine chemoresistence. MiR-145 is a tumor suppressor which directly targets p70S6K1 for inhibiting its expression in pancreatic adenocarcinoma, providing new therapeutic scheme. Our findings revealed a new mechanism underlying gemcitabine chemoresistance in pancreatic adenocarcinoma cells

    Linking Genes to Microbial Biogeochemical Cycling Lessons from Arsenic

    Get PDF
    The biotransformation of arsenic is highly relevant to the arsenic biogeochemical cycle. Identification of the molecular details of microbial pathways of arsenic biotransformation coupled with analyses of microbial communities by meta -omits can provide insights into detailed aspects of the complexities of this biocycle. Arsenic transformations couple to other biogeochemical cycles, and to the fate of both nutrients and other toxic environmental contaminants. Microbial redox metabolism of iron, carbon, sulfur, and nitrogen affects the redox and bioavailability of arsenic species. In this critical review we illustrate the biogeochemical processes and genes involved in arsenic biotransformations. We discuss how current and future metagenomie-, metatranscriptornic-, inetaproteomie-, arid inetabolothic-based methods will help to decipher individual microbial arsenic transformation processes, and their connections to other biogeochemical cycle. These insights will allow future use of microbial metabolic capabilities for biotechnological solutions to environmental problems. To understand the complex nature of inorganic and organic arsenic species and the fate of environmental arsenic will require integrating systematic approaches with biogeochemical modeling., Finally, from the lessons learned from these studies of arsenic biogeochemistry, we will be able to predict how the environment changes arsenic, and, in response, how arsenic biotransformations change the environment. [GRAPHICS

    Molecular cloning, expression profiling, and yeast complementation of 19 β-tubulin cDNAs from developing cotton ovules

    Get PDF
    Microtubules are a major structural component of the cytoskeleton and participate in cell division, intracellular transport, and cell morphogenesis. In the present study, 795 cotton tubulin expressed sequence tags were analysed and 19 β-tubulin genes (TUB) cloned from a cotton cDNA library. Among the group, 12 cotton TUBs (GhTUBs) are reported for the first time here. Transcription profiling revealed that nine GhTUBs were highly expressed in elongating fibre cells as compared with fuzzless-lintless mutant ovules. Treating cultured wild-type cotton ovules with exogenous phytohormones showed that individual genes can be induced by different agents. Gibberellin induced expression of GhTUB1 and GhTUB3, ethylene induced expression of GhTUB5, GhTUB9, and GhTUB12, brassinosteroids induced expression of GhTUB1, GhTUB3, GhTUB9, and GhTUB12, and lignoceric acid induced expression of GhTUB1, GhTUB3, and GhTUB12. When GhTUBs were transformed into the Saccharomyces cerevisiae inviable mutant, tub2, which is deficient in β-tubulin, one ovule-specific and eight of nine fibre-preferential GhTUBs rescued this lethality. This study suggests that the proteins encoded by cotton GhTUBs are involved during cotton fibre development

    Biosynthesis of arsenolipids by the cyanobacterium Synechocystis sp. PCC 6803

    Get PDF
    Although methylated arsenic and arsenosugars have been verified in various freshwater organisms, lipid-soluble arsenic compounds have not been identified. Here, we report investigations with the model organism cyanobacterium Synechocystis sp. PCC 6803 wild type and arsM (arsenic(III) S-adenosylmethionine methyltransferase) mutant strain, which lacks the enzymes for arsenic methylation cultured in various concentrations of arsenate (As-V). Although Synechocystis accumulated higher arsenic concentrations at the higher exposure levels, the bioaccumulation factor decreased with increasing As-V. The accumulated arsenic in the cells was partitioned into water-soluble and lipid-soluble fractions; lipid-soluble arsenic was found in Synechocystis wild type cells (3-35% of the total depending on the level of arsenic exposure), but was not detected in Synechocystis arsM mutant strain showing that ArsM was required for arsenolipid biosynthesis. The arsenolipids present in Synechocystis sp. PCC 6803 were analysed by high performance liquid chromatography-inductively coupled plasma-mass spectrometry, high performance liquid chromatography-electrospray mass spectrometry, and high resolution tandem mass spectrometry. The two major arsenolipids were characterised as arsenosugar phospholipids based on their assigned molecular formulas C47H88O14AsP and C47H90O14AsP, and tandem mass spectrometric data demonstrated the presence of the phosphate arsenosugar and acylated glycerol groups

    Treatment with gelsolin reduces brain inflammation and apoptotic signaling in mice following thermal injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Burn survivors develop long-term cognitive impairment with increased inflammation and apoptosis in the brain. Gelsolin, an actin-binding protein with capping and severing activities, plays a crucial role in the septic response. We investigated if gelsolin infusion could attenuate neural damage in burned mice.</p> <p>Methods</p> <p>Mice with 15% total body surface area burns were injected intravenously with bovine serum albumin as placebo (2 mg/kg), or with low (2 mg/kg) or high doses (20 mg/kg) of gelsolin. Samples were harvested at 8, 24, 48 and 72 hours postburn. The immune function of splenic T cells was analyzed. Cerebral pathology was examined by hematoxylin/eosin staining, while activated glial cells and infiltrating leukocytes were detected by immunohistochemistry. Cerebral cytokine mRNAs were further assessed by quantitative real-time PCR, while apoptosis was evaluated by caspase-3. Neural damage was determined using enzyme-linked immunosorbent assay of neuron-specific enolase (NSE) and soluble protein-100 (S-100). Finally, cerebral phospho-ERK expression was measured by western blot.</p> <p>Results</p> <p>Gelsolin significantly improved the outcomes of mice following major burns in a dose-dependent manner. The survival rate was improved by high dose gelsolin treatment compared with the placebo group (56.67% vs. 30%). Although there was no significant improvement in outcome in mice receiving low dose gelsolin (30%), survival time was prolonged against the placebo control (43.1 ± 4.5 h vs. 35.5 ± 5.0 h; P < 0.05). Burn-induced T cell suppression was greatly alleviated by high dose gelsolin treatment. Concurrently, cerebral abnormalities were greatly ameliorated as shown by reduced NSE and S-100 content of brain, decreased cytokine mRNA expressions, suppressed microglial activation, and enhanced infiltration of CD11b+ and CD45+ cells into the brain. Furthermore, the elevated caspase-3 activity seen following burn injury was remarkably reduced by high dose gelsolin treatment along with down-regulation of phospho-ERK expression.</p> <p>Conclusion</p> <p>Exogenous gelsolin infusion improves survival of mice following major burn injury by partially attenuating inflammation and apoptosis in brain, and by enhancing peripheral T lymphocyte function as well. These data suggest a novel and effective strategy to combat excessive neuroinflammation and to preserve cognition in the setting of major burns.</p
    corecore