78 research outputs found

    Cognitive consequences of expressive suppression : effects of sex and emotional valence

    Get PDF
    The present research was designed to examine whether sex and/or emotional valence pl aya role in the cognitive consequences (e.g., memory) of expressive suppression. Seventy-two (36 male and 36 female) undergraduates were randomly assigned to either a control or expressive suppression condition, and were asked to watch silent film clips intended to elicit amusement and disgust. While watching each film, participants listened to sixteen nonemotional words. After each film, participants were asked to answer questions about wha t they had seen in the film (visual memory), to recall as many words as they could (auditory recall memory), and to select from a list any words that they had heard during the previous film clip (auditory recognition memory). With regard to the effects of expressive suppression on visual memory, results indicated a 3-way interaction between condition, sex and film emotion: Men performed more poorly than women on the visual memory test after watching both the amusing and disgusting films in the control condition, and when watching the amusing film in the expressive suppression condition. However, men in the expressive suppression condition performed better than women after watching the disgusting film. In terms of the effects of expressive suppression on auditory memory (recognition and recall), a condition x film emotion interaction indicated that there was no difference in auditory memory for the expressive suppression and control conditions when watching the amusing film, but that the expressive suppression group showed poorer auditory memory than the control group for words presented during the disgusting film. Moreover, a ma in effect of sex on auditory memory suggested that men recalled and recognized more words than women across conditions. Taken together, these findings suggest that both sex and the emotional valence of films may influence the effects of expressive suppression on memory. Results will be discussed in the context of previous literature concerning the effects of expressive suppression on cognition

    A signal cascade originated from epidermis defines apical-basal patterning of Arabidopsis shoot apical meristems

    Get PDF
    In multicellular organisms, a long-standing question is how spatial patterns of distinct cell types are initiated and maintained during continuous cell division and proliferation. Along the vertical axis of plant shoot apical meristems (SAMs), stem cells are located at the top while cells specifying the stem cells are located more basally, forming a robust apical-basal pattern. We previously found that in Arabidopsis SAMs, the HAIRY MERISTEM (HAM) family transcription factors form a concentration gradient from the epidermis to the interior cell layers, and this gradient is essential for the stem cell specification and the apical-basal patterning of the SAMs. Here, we uncover that epidermis specific transcription factors, ARABIDOPSIS THALIANA MERISTEM LAYER 1 (ATML1) and its close homolog, define the concentration gradient of HAM in the SAM through activating a group of microRNAs. This study provides a molecular framework linking the epidermis-derived signal to the stem cell homeostasis in plants

    The impact of mineral compositions on hydrate morphology evolution and phase transition hysteresis in natural clayey silts

    Get PDF
    The authors are grateful to the National Natural Science Foundation of China, China [51991365]; China Geological Survey Project, China [DD20211350]; Guangdong Major Project of Basic and Applied Basic Research, China [2020B0301030003]; Key Program of Marine Economy Development (Six Marine Industries) of Special Foundation of Department of Natural Resources of Guangdong Province, China [2021]56.Peer reviewedPublisher PD

    Disruption of actin filaments induces mitochondrial Ca2+ release to the cytoplasm and [Ca2+]c changes in Arabidopsis root hairs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitochondria are dynamic organelles that move along actin filaments, and serve as calcium stores in plant cells. The positioning and dynamics of mitochondria depend on membrane-cytoskeleton interactions, but it is not clear whether microfilament cytoskeleton has a direct effect on mitochondrial function and Ca<sup>2+ </sup>storage. Therefore, we designed a series of experiments to clarify the effects of actin filaments on mitochondrial Ca<sup>2+ </sup>storage, cytoplasmic Ca<sup>2+ </sup>concentration ([Ca<sup>2+</sup>]<sub>c</sub>), and the interaction between mitochondrial Ca<sup>2+ </sup>and cytoplasmic Ca<sup>2+ </sup>in <it>Arabidopsis </it>root hairs.</p> <p>Results</p> <p>In this study, we found that treatments with latrunculin B (Lat-B) and jasplakinolide (Jas), which depolymerize and polymerize actin filaments respectively, decreased membrane potential and Ca<sup>2+ </sup>stores in the mitochondria of <it>Arabidopsis </it>root hairs. Simultaneously, these treatments induced an instantaneous increase of cytoplasmic Ca<sup>2+</sup>, followed by a continuous decrease. All of these effects were inhibited by pretreatment with cyclosporin A (Cs A), a representative blocker of the mitochondrial permeability transition pore (mPTP). Moreover, we found there was a Ca<sup>2+ </sup>concentration gradient in mitochondria from the tip to the base of the root hair, and this gradient could be disrupted by actin-acting drugs.</p> <p>Conclusions</p> <p>Based on these results, we concluded that the disruption of actin filaments caused by Lat-B or Jas promoted irreversible opening of the mPTP, resulting in mitochondrial Ca<sup>2+ </sup>release into the cytoplasm, and consequent changes in [Ca<sup>2+</sup>]<sub>c</sub>. We suggest that normal polymerization and depolymerization of actin filaments are essential for mitochondrial Ca<sup>2+ </sup>storage in root hairs.</p

    Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling

    Get PDF
    The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling. © 2016 Hou et al

    Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode

    Get PDF
    We observe the excitation and tuning of electromagnetically induced transparency (EIT) by the interference between different excitation pathways of the dark mode in a planar terahertz metamaterial. The EIT unit cell consists of a cut wire as the bright resonator and a pair of split ring resonators (SRRs) as the dark element. The dark mode resonance is excited by both the electric and magnetic fields when the SRR pair translates along the wire without altering the lateral distance between the resonators. The electric and magnetic pathways of exciting the dark mode allows for a giant amplitude modulation of the EIT resonance.Peer reviewedElectrical and Computer Engineerin

    Signal Integration by Cyclin-Dependent Kinase 8 (CDK8) Module and Other Mediator Subunits in Biotic and Abiotic Stress Responses

    No full text
    Environmental stresses have driven plants to develop various mechanisms to acclimate in adverse conditions. Extensive studies have demonstrated that a significant reprogramming occurs in the plant transcriptome in response to biotic and abiotic stresses. The highly conserved and large multi-subunit transcriptional co-activator of eukaryotes, known as the Mediator, has been reported to play a substantial role in the regulation of important genes that help plants respond to environmental perturbances. CDK8 module is a relatively new component of the Mediator complex that has been shown to contribute to plants&rsquo; defense, development, and stress responses. Previous studies reported that CDK8 module predominantly acts as a transcriptional repressor in eukaryotic cells by reversibly associating with core Mediator. However, growing evidence has demonstrated that depending on the type of biotic and abiotic stress, the CDK8 module may perform a contrasting regulatory role. This review will summarize the current knowledge of CDK8 module as well as other previously documented Mediator subunits in plant cell signaling under stress conditions

    Mediator Complex: A Pivotal Regulator of ABA Signaling Pathway and Abiotic Stress Response in Plants

    No full text
    As an evolutionarily conserved multi-protein complex, the Mediator complex modulates the association between transcription factors and RNA polymerase II to precisely regulate gene transcription. Although numerous studies have shown the diverse functions of Mediator complex in plant development, flowering, hormone signaling, and biotic stress response, its roles in the Abscisic acid (ABA) signaling pathway and abiotic stress response remain largely unclear. It has been recognized that the phytohormone, ABA, plays a predominant role in regulating plant adaption to various abiotic stresses as ABA can trigger extensive changes in the transcriptome to help the plants respond to environmental stimuli. Over the past decade, the Mediator complex has been revealed to play key roles in not only regulating the ABA signaling transduction but also in the abiotic stress responses. In this review, we will summarize current knowledge of the Mediator complex in regulating the plants&rsquo; response to ABA as well as to the abiotic stresses of cold, drought and high salinity. We will particularly emphasize the involvement of multi-functional subunits of MED25, MED18, MED16, and CDK8 in response to ABA and environmental perturbation. Additionally, we will discuss potential research directions available for further deciphering the role of Mediator complex in regulating ABA and other abiotic stress responses
    corecore