39 research outputs found

    Permanently-Installed Distributed Pressure Sensors for Downhole Applications

    Get PDF
    Technology advancements (e.g., hydraulic fracturing and horizontal drilling) to recover unconventional oil and gas (UOG) resources are critical in maintaining future U.S. oil and gas production levels. Permanently installed distributed downhole pressure sensors could monitor fracture propagation, assess the effectiveness of hydraulic fracturing, and optimize hydraulic fracturing placement so that overall UOG recovery efficiency can be increased. However, the harsh environment (high temperatures, high pressures, strong vibration, and presence of brine, mud, debris, hydrate, and various gases), the long data telemetry distance, and the requirements of reliability and service lifetime make the downhole monitoring a very challenging task. To combat these challenges, this thesis presents three sensing systems for downhole pressure monitoring. First, A microwave-photonic low-coherence interferometry (MPLCI) system is proposed for optical fiber based distributed sensing. The system can be used to interrogate the intrinsic Fabry–Pérot interferometers (IFPIs) based distributed downhole pressure sensors. Assisted by an unbalanced Michelson interferometer (MI), a low-coherence laser source is used to interrogate IFPIs along with an optical fiber for a dark zone-free (or spatially continuous) distributed measurement. By combining the advantages of microwaves and photonics, the MPLCI system can synergistically achieve high sensitivity and high spatial resolution. Second, to solve the packaging and drift problems in optical fiber sensors, an all-digital sensing method based on an electrical encoder is developed for downhole pressure monitoring. The key innovation of the all-digital sensor concept is the built-in nonelectric analog-to-digital converter (ADC), which eliminates the need for downhole electronics for signal conditioning and telemetry in conventional electrical downhole sensors. As such, the sensors are more robust, less expensive, and have less drift in comparison with the existing sensors. Because the sensor outputs are digital in nature, the developed sensors can be remotely logged over a long distance, and many sensors can be digitally multiplexed for distributed sensing using a single surface instrument. The all-digital pressure sensors and their surface instrument were designed, engineered, fabricated, and calibrated. The integrated sensing system was tested/validated at both laboratory and research wellbores. Third, to solve the hysteresis problem induced by the electrical encoder, a non-contact optical encoder based all-digital pressure sensor for downhole applications is proposed. The proposed sensor combines the advantages of both optical fiber and all-digital sensing method. The noncontact-type encoder, which is composed of an encoding pad and an all-glass optical fiber sensing head. A glass additive and subtractive manufacturing (ASM) system was used to embed the multi-channel optical fibers into a bulk-fused silica glass substrate with high positioning accuracy and good thermal stability even at elevated temperatures. The optical fiber only serves as the telemetry channel to directly transmit the data in digital format, such that the system has long-distance telemetry capability as well as low drift. The proposed pressure sensor was manufactured and experimentally verified to have a high SNR, linear pressure response, and good long-term stability. In addition, a mathematical model to study the relationships between the sensor’s performances and design parameters was established

    Floral response to the Late Triassic Carnian Pluvial Episode

    Get PDF
    The Late Triassic Carnian Pluvial Episode (CPE; ca. 234–232 Ma) was characterized by dramatic global temperature and humidity increases, which in many terrestrial settings was accompanied by changes from arid to humid vegetation types. This study reviews current evidence of terrestrial floral composition and distribution during the CPE and analyzes spatial and temporal variation with relation to potential environmental driving mechanisms. Available evidence suggests the CPE was a globally significant event that triggered significant increases in the abundance of ferns and hygrophytes in terrestrial floras and freshwater algae in fluvial and lacustrine settings. These changes ended a long interval of relatively arid terrestrial climatic conditions since the early Triassic and are linked temporally with eruptions of the oceanic plateau Wrangellia Large Igneous Province (LIP). The massive release of greenhouse gasses including isotopically light CO2 during 3–4 distinct pulses of Wrangellia volcanism appears to have been the main driver of CPE climate change. Each pulse enhanced global atmospheric circulation and the hydrological cycle and resulted in changes from arid to humid conditions that affected floral abundance and composition. Higher terrestrial primary productivity in humid phases facilitated increased burial of terrestrial organic carbon and led to the recommencement of peat accumulation, ending the coal gap that had persisted since the earliest Triassic times. Enhanced movement of carbon from the atmosphere through the biosphere into the geosphere may have counteracted the warming effects of Wrangellia volcanic greenhouse gas emissions and ultimately led to the return of a steady climate state that terminated the warm and humid conditions of the CPE

    Preparation of molecularly imprinted polymer for selective solid-phase extraction and simultaneous determination of five sulfonylurea herbicides in cereals

    Get PDF
    Molecular imprinting polymer (MIP) has been increasingly employed for sulfonylurea herbicides (SUHs) detection in different matrices. A novel MIP that was effective as a highly class-selective sorbent in molecularly imprinted solid-phase extraction (MISPE) was successfully prepared for isolation and purification of SUHs, namely, metsulfuron-methyl, chlorsulfuron, chlorimuron-ethyl, prosulfuron, and pyrazosulfuron-ethyl, in rice, corn and soybean samples. The MIP was synthesized by precipitation polymerization using metsulfuron-methyl as the template, 4-vinylpyridine as the functional monomer, ethylene glycol dimethacrylate as the crosslinker, and MeCN as the porogen. The polymerization system of the MIP was optimized, and its adsorption performances were evaluated by comparing its adsorption isotherms and adsorption kinetics with those of a non-imprinted polymer (NIP). Following MISPE for extracting and enriching SUHs from rice, corn and soybean samples, high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was performed. Acceptable recoveries were observed at SUHs contaminant concentrations of 10, 20 and 40 ÎĽg/L: from 77.56 to 99.81%, with relative standard deviations of <13.8% (n = 5) for all samples. The limits of detection for the five SUHs were 0.21-0.26 ÎĽg/L. The results demonstrated that the proposed MISPE-HPLC-MS/MS method is an effective approach for the simultaneous and sensitive determination of the five SUHs in rice, corn and soybean samples

    Treatment of mild and moderate congenital ptosis via the levator imbrication technique

    No full text
    Background: To correct mild and moderate congenital ptosis, traditional surgical techniques usually include dissection of the Müller’s muscle. Meanwhile, both the levator palpebrae superioris and the Müller’s muscle play a synergistic role to elevate the upper eyelid. Thus, to protect the Müller muscle and minimize injury, we developed and applied a levator imbrication technique in patients with mild and moderate congenital ptosis and followed it up to evaluate its clinical efficacy. Methods: This retrospective case series included 53 patients with mild and moderate congenital ptosis, all of whom had undergone ptosis correction using the levator imbrication technique at the Plastic and Aesthetic Department of the Second Affiliated Hospital of Zhengzhou University between June 2018 and June 2020. The outcomes of correction, upper eyelid appearance, and operative complications were observed and analyzed. The postoperative follow-up was 3–12 months. Results: Fifty cases of ptosis were fully corrected, and the bilateral double eyelids were smooth and natural. The eyelids of 20 patients were incompletely closed immediately after the operation but were able to close spontaneously within 2 weeks. No serious complications such as exposure keratitis were reported. Three patients with undercorrection underwent reoperation 3 months after the first operation, and ptosis was corrected. Conclusion: The levator imbrication technique for mild and moderate congenital ptosis is simple to perform and shortens the operation time with less damage, stable postoperative outcomes, and no long-term complications

    Extracellular Proteome Analysis of Leptospira interrogans serovar Lai

    Full text link
    Leptospirosis is one of the most important zoonoses. Leptospira interrogans serovar Lai is a pathogenic spirochete that is responsible for leptospirosis. Extracellular proteins play an important role in the pathogenicity of this bacterium. In this study, L. interrogans serovar Lai was grown in protein-free medium; the supernatant was collected and subsequently analyzed as the extracellular proteome. A total of 66 proteins with more than two unique peptides were detected by MS/MS, and 33 of these were predicted to be extracellular proteins by a combination of bioinformatics analyses, including Psortb, cello, SoSuiGramN and SignalP. Comparisons of the transcriptional levels of these 33 genes between in vivo and in vitro conditions revealed that 15 genes were upregulated and two genes were downregulated in vivo compared to in vitro. A BLAST search for the components of secretion system at the genomic and proteomic levels revealed the presence of the complete type I secretion system and type II secretion system in this strain. Moreover, this strain also exhibits complete Sec translocase and Tat translocase systems. The extracellular proteome analysis of L. interrogans will supplement the previously generated whole proteome data and provide more information for studying the functions of specific proteins in the infection process and for selecting candidate molecules for vaccines or diagnostic tools for leptospirosis.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140174/1/omi.2013.0043.pd

    Optimization of Sweep and Blade Lean for Diffuser to Suppress Hub Corner Vortex in Multistage Pump

    No full text
    The bowl diffuser is the main flow component in multistage submersible pumps; however, secondary flow fields can easily induce a separation vortex in the hub corner region of the bowl diffuser during normal operation. To explore the flow mechanism of the hub corner separation vortex and develop a method for suppressing hub corner separation vortices, the lean and sweep of the diffuser blade were optimized using computational fluid dynamics (CFD) simulations and central composite design. Diffuser efficiency, static pressure recovery coefficient, and non-uniformity were selected as the optimization objectives. Details of the internal flow were revealed and the collaborative response relationships between blade lean/sweep parameter equations and optimization objectives were established. The optimization results show that a greater pressure difference between the pressure surface and suction surface (PS–SS) at the inlet can offset transverse secondary flow, whereas a lower PS–SS pressure difference will cause a drop in low-energy fluid in the diffuser mid-section. The blade’s lean scheme suppresses the hub corner separation vortex, leading to an increase in pressure recovery and diffuser efficiency. Moreover, optimizing the sweep scheme can reduce the shroud–hub pressure difference at the inlet to offset spanwise secondary flow and enhance the hub–shroud pressure difference at the outlet, thus driving low-energy fluid further downstream. The sweep scheme suppresses the hub corner vortex, with a resulting drop in non-uniformity of 13.1%. Therefore, optimization of the diffuser blade’s lean and sweep can result in less low-energy fluid or drive it further away from hub, thereby suppressing the hub corner vortex and improving hydraulic performance. The outcomes of this work are relevant to the advanced design of bowl diffusers for multistage submersible pumps

    A Matheuristic Approach for the Home Care Scheduling Problem With Chargeable Overtime and Preference Matching

    No full text
    Home care (HC) services represent an effective solution to face the health issues related to population aging. However, several scheduling problems arise in HC, and the providers must make several scheduling and routing decisions, e.g., the assignment of caregivers to clients, in order to balance operating costs and client satisfaction. Starting from the analysis of a real HC provider operating in New York City, NY, USA, this article addresses a scheduling problem with chargeable overtime and preference matching and formulates it as an integer programming model. The objective is to minimize a cost function that includes traveling costs, the overtime cost paid by the provider, the preference mismatch, and a penalty related to the continuity of care violation. To solve this problem, we design a matheuristic algorithm that integrates a specific variable neighborhood search with a set covering model. The results demonstrate the applicability and efficiency of our approach to solving real-size instances. Sensitivity analyses are also performed to discuss practical insights
    corecore