19 research outputs found

    Turning a CLIP Model into a Scene Text Spotter

    Full text link
    We exploit the potential of the large-scale Contrastive Language-Image Pretraining (CLIP) model to enhance scene text detection and spotting tasks, transforming it into a robust backbone, FastTCM-CR50. This backbone utilizes visual prompt learning and cross-attention in CLIP to extract image and text-based prior knowledge. Using predefined and learnable prompts, FastTCM-CR50 introduces an instance-language matching process to enhance the synergy between image and text embeddings, thereby refining text regions. Our Bimodal Similarity Matching (BSM) module facilitates dynamic language prompt generation, enabling offline computations and improving performance. FastTCM-CR50 offers several advantages: 1) It can enhance existing text detectors and spotters, improving performance by an average of 1.7% and 1.5%, respectively. 2) It outperforms the previous TCM-CR50 backbone, yielding an average improvement of 0.2% and 0.56% in text detection and spotting tasks, along with a 48.5% increase in inference speed. 3) It showcases robust few-shot training capabilities. Utilizing only 10% of the supervised data, FastTCM-CR50 improves performance by an average of 26.5% and 5.5% for text detection and spotting tasks, respectively. 4) It consistently enhances performance on out-of-distribution text detection and spotting datasets, particularly the NightTime-ArT subset from ICDAR2019-ArT and the DOTA dataset for oriented object detection. The code is available at https://github.com/wenwenyu/TCM.Comment: arXiv admin note: text overlap with arXiv:2302.1433

    The study of spontaneous combustion region partition and nitrogen injection effect forecast based on CFD method

    Get PDF
    AbstractIn order to understand the contribution of spontaneous combustion dangerous region under U type ventilation in gob area, mathematical model describing air flow and temperature heating was established according to mass, momentum and energy conservation equations and solved by FLUENT software. The calculation results show that oxygen mainly concentrates in front of gob near face and decays along depth. Since oxygen consumes along the track, oxygen concentration in intake way is much higher than that in return way, and the air leakage speed near work face is much higher than depth of gob. Thus, dangerous region is divided by oxygen and air leakage criterion. Besides, the area near work face has lower temperature than oxidation region by the effect of heat dissipation while temperature in depth gob decreases gradually due to the low oxygen concentration. Heating process can be seen as an accelerating process. Nitrogen injection can decrease the oxidation scope effectively. Nitrogen injection position in dissipation area is better than in oxidation area. Calculation results reflect the real situation objectively and can be referenced by real engineering practices

    2-D analytical winding losses model of micro-inductor

    No full text

    Downregulated miRNA-491-3p accelerates colorectal cancer growth by increasing uMtCK expression

    No full text
    Colorectal carcinoma (CRC) is the second most frequent cancer worldwide. MiR-491-3p, a tumor-suppressive microRNA (miRNA, miR), has been revealed to be abnormally expressed in CRC tissues. Meanwhile, up-regulated ubiquitous mitochondrial creatine kinase (uMtCK) contributes to CRC cell proliferation. Here we aim to explore whether aberrant miR-491-3p expression promotes CRC progression through regulating uMtCK. To this end, miR-491-3p and uMtCK levels were assessed in CRC tissues using quantitative real-time PCR (qRT-PCR). The biological roles of miR-491-3p and uMtCK in regulating CRC growth were evaluated using colony formation assay and mouse Xenograft tumour model. We found that miR-491-3p expression was decreased in CRC tissues compared with matched para-cancerous tissues, whereas uMtCK expression was increased. Functionally, miR-491-3p overexpression repressed SW480 cell growth, whereas miR-491-3p depletion accelerated SW620 cell proliferation and growth. Inversely, uMtCK positively regulated CRC cell proliferation. Mechanistically, miR-491-3p post-transcriptionally downregulated uMtCK expression by binding to 3’-UTR of uMtCK. Consequently, restoring uMtCK expression markedly eliminated the role of miR-491-3p in suppressing CRC growth. Collectively, miR-491-3p functions as a tumour suppressor gene by repressing uMtCK, and may be a potential target for CRC treatment

    Superhydrophobic Shish-kebab Membrane with Self-Cleaning and Oil/Water Separation Properties

    No full text
    In nature, the water-repellent surface of a superhydrophobic material such as lotus has the micro/nano hierarchical structure, while shish-kebab, which is one of the most fascinating superstructure crystals in polymer science, also exhibits micro/nano hierarchical structure. Accordingly, it remains an idea of whether this structure can be used as the superhydrophobic materials. In this work, a modified flow-induced crystallization method was employed to fabricate a pure shish-kebab membrane, whose wetting behavior and other related performances were comprehensively studied. The membrane surface displays superhydrophobic characteristic with a static water contact angle of 161° and sliding angle of 3°. More importantly, the superhydrophobic membrane not only is of low adhesive, anti-impact, and self-cleaning performance, but also presents oil/water separation capacity, high absorption capacity with porosity (67–83%), and recyclability for organic liquids. This work proposed a new approach from the viewpoint of shish-kebab aggregation to construct a micro/nano structure in the polymer membrane with superhydrophobicity and other functional properties

    Superhydrophobic Shish-kebab Membrane with Self-Cleaning and Oil/Water Separation Properties

    No full text
    In nature, the water-repellent surface of a superhydrophobic material such as lotus has the micro/nano hierarchical structure, while shish-kebab, which is one of the most fascinating superstructure crystals in polymer science, also exhibits micro/nano hierarchical structure. Accordingly, it remains an idea of whether this structure can be used as the superhydrophobic materials. In this work, a modified flow-induced crystallization method was employed to fabricate a pure shish-kebab membrane, whose wetting behavior and other related performances were comprehensively studied. The membrane surface displays superhydrophobic characteristic with a static water contact angle of 161° and sliding angle of 3°. More importantly, the superhydrophobic membrane not only is of low adhesive, anti-impact, and self-cleaning performance, but also presents oil/water separation capacity, high absorption capacity with porosity (67–83%), and recyclability for organic liquids. This work proposed a new approach from the viewpoint of shish-kebab aggregation to construct a micro/nano structure in the polymer membrane with superhydrophobicity and other functional properties

    Superhydrophobic Shish-kebab Membrane with Self-Cleaning and Oil/Water Separation Properties

    No full text
    In nature, the water-repellent surface of a superhydrophobic material such as lotus has the micro/nano hierarchical structure, while shish-kebab, which is one of the most fascinating superstructure crystals in polymer science, also exhibits micro/nano hierarchical structure. Accordingly, it remains an idea of whether this structure can be used as the superhydrophobic materials. In this work, a modified flow-induced crystallization method was employed to fabricate a pure shish-kebab membrane, whose wetting behavior and other related performances were comprehensively studied. The membrane surface displays superhydrophobic characteristic with a static water contact angle of 161° and sliding angle of 3°. More importantly, the superhydrophobic membrane not only is of low adhesive, anti-impact, and self-cleaning performance, but also presents oil/water separation capacity, high absorption capacity with porosity (67–83%), and recyclability for organic liquids. This work proposed a new approach from the viewpoint of shish-kebab aggregation to construct a micro/nano structure in the polymer membrane with superhydrophobicity and other functional properties

    Superhydrophobic Shish-kebab Membrane with Self-Cleaning and Oil/Water Separation Properties

    No full text
    In nature, the water-repellent surface of a superhydrophobic material such as lotus has the micro/nano hierarchical structure, while shish-kebab, which is one of the most fascinating superstructure crystals in polymer science, also exhibits micro/nano hierarchical structure. Accordingly, it remains an idea of whether this structure can be used as the superhydrophobic materials. In this work, a modified flow-induced crystallization method was employed to fabricate a pure shish-kebab membrane, whose wetting behavior and other related performances were comprehensively studied. The membrane surface displays superhydrophobic characteristic with a static water contact angle of 161° and sliding angle of 3°. More importantly, the superhydrophobic membrane not only is of low adhesive, anti-impact, and self-cleaning performance, but also presents oil/water separation capacity, high absorption capacity with porosity (67–83%), and recyclability for organic liquids. This work proposed a new approach from the viewpoint of shish-kebab aggregation to construct a micro/nano structure in the polymer membrane with superhydrophobicity and other functional properties

    Superhydrophobic Shish-kebab Membrane with Self-Cleaning and Oil/Water Separation Properties

    No full text
    In nature, the water-repellent surface of a superhydrophobic material such as lotus has the micro/nano hierarchical structure, while shish-kebab, which is one of the most fascinating superstructure crystals in polymer science, also exhibits micro/nano hierarchical structure. Accordingly, it remains an idea of whether this structure can be used as the superhydrophobic materials. In this work, a modified flow-induced crystallization method was employed to fabricate a pure shish-kebab membrane, whose wetting behavior and other related performances were comprehensively studied. The membrane surface displays superhydrophobic characteristic with a static water contact angle of 161° and sliding angle of 3°. More importantly, the superhydrophobic membrane not only is of low adhesive, anti-impact, and self-cleaning performance, but also presents oil/water separation capacity, high absorption capacity with porosity (67–83%), and recyclability for organic liquids. This work proposed a new approach from the viewpoint of shish-kebab aggregation to construct a micro/nano structure in the polymer membrane with superhydrophobicity and other functional properties
    corecore