131 research outputs found

    Activity of D1/2 Receptor Expressing Neurons in the Nucleus Accumbens Regulates Running, Locomotion, and Food Intake

    Get PDF
    While weight gain is clearly promoted by excessive energy intake and reduced expenditure, the underlying neural mechanisms of energy balance remain unclear. The NAc is one brain region that has received attention for its role in the regulation of energy balance; its D1 and D2 receptor containing neurons have distinct functions in regulating reward behavior and require further examination. The goal of the present study is to investigate how activation and inhibition of D1 and D2 neurons in the NAc influences behaviors related to energy intake and expenditure. Specific manipulation of D1 vs D2 neurons was done in both low expenditure and high expenditure (wheel running) conditions to assess behavioral effects in these different states. Direct control of neural activity was achieved using a DREADD (Designer Receptors Exclusively Activated by Designer Drugs) strategy. Activation of NAc D1 neurons increased food intake, wheel running and locomotor activity. In contrast, activation of D2 neurons in the NAc reduced running and locomotion while D2 neuron inhibition had opposite effects. These results highlight the importance of considering both intake and expenditure in the analysis of D1 and D2 neuronal manipulations. Moreover, the behavioral outcomes from D1 NAc neuronal manipulations depend upon the activity state of the animals (wheel running vs non-running). The data support and complement the hypothesis of specific NAc dopamine pathways facilitating energy expenditure and suggest a potential strategy for human weight control

    Molecular dynamics simulation of surfactant induced wettability alteration of shale reservoirs

    Get PDF
    Shale oil has recently received considerable attention as a promising energy source due to its substantial reserves. However, the recovery of shale oil presents numerous challenges due to the low-porosity and low-permeability characteristics of shale reservoirs. To tackle this challenge, the introduction of surfactants capable of modifying wettability has been employed to enhance shale oil recovery. In this study, we perform molecular dynamics simulations to investigate the influence of surfactants on the alteration of wettability in shale reservoirs. Firstly, surfaces of kaolinite, graphene, and kerogen are constructed to represent the inorganic and organic constituents of shale reservoirs. The impact and underlying mechanisms of two types of ionic surfactants, namely, the anionic surfactant sodium dodecylbenzene sulfonate (SDBS) and cationic surfactant dodecyltrimethylammonium bromide (DTAB), on the wettability between oil droplets and surfaces are investigated. The wettability are analyzed from different aspects, including contact angle, centroid ordinates, and self-diffusion coefficient. Simulation results show that the presence of surfactants can modify the wetting characteristics of crude oil within shale reservoirs. Notably, a reversal of wettability has been observed for oil-wet kaolinite surfaces. As for kerogen surfaces, it is found that an optimal surfactant concentration exists, beyond which the further addition of surfactant may not enhance the efficiency of wettability alteration

    Evaluation of anti-smoking television advertising on tobacco control among urban community population in Chongqing, China

    Get PDF
    Background China is the largest producer and consumer of tobacco in the world. Considering the constantly growing urban proportion, persuasive tobacco control measures are important in urban communities. Television, as one of the most pervasive mass media, can be used for this purpose. Methods The anti-smoking advertisement was carried out in five different time slots per day from 15 May to 15 June in 2011 across 12 channels of Chongqing TV. A cross-sectional study was conducted in the main municipal areas of Chongqing. A questionnaire was administered in late June to 1,342 native residents aged 18–45, who were selected via street intercept survey. Results Respondents who recognized the advertisement (32.77 %) were more likely to know or believe that smoking cigarettes caused impotence than those who did not recognize the advertisement (26.11 %). According to 25.5 % of smokers, the anti-smoking TV advertising made them consider quitting smoking. However, females (51.7 %) were less likely to be affected by the advertisement to stop and think about quitting smoking compared to males (65.6 %) (OR = 0.517, 95 % CI [0.281–0.950]). In addition, respondents aged 26–35 years (67.4 %) were more likely to try to persuade others to quit smoking than those aged 18–25 years (36.3 %) (OR = 0.457, 95 % CI [0.215–0.974]). Furthermore, non-smokers (87.4 %) were more likely to find the advertisement relevant than smokers (74.8 %) (OR = 2.34, 95 % CI [1.19–4.61]). Conclusions This study showed that this advertisement did not show significant differences on smoking-related knowledge and attitude between non-smokers who had seen the ad and those who had not. Thus, this form may not be the right tool to facilitate change in non-smokers. The ad should instead be focused on the smoking population. Gender, smoking status, and age influenced the effect of anti-smoking TV advertising on the general population in China

    PonderV2: Pave the Way for 3D Foundation Model with A Universal Pre-training Paradigm

    Full text link
    In contrast to numerous NLP and 2D computer vision foundational models, the learning of a robust and highly generalized 3D foundational model poses considerably greater challenges. This is primarily due to the inherent data variability and the diversity of downstream tasks. In this paper, we introduce a comprehensive 3D pre-training framework designed to facilitate the acquisition of efficient 3D representations, thereby establishing a pathway to 3D foundational models. Motivated by the fact that informative 3D features should be able to encode rich geometry and appearance cues that can be utilized to render realistic images, we propose a novel universal paradigm to learn point cloud representations by differentiable neural rendering, serving as a bridge between 3D and 2D worlds. We train a point cloud encoder within a devised volumetric neural renderer by comparing the rendered images with the real images. Notably, our approach demonstrates the seamless integration of the learned 3D encoder into diverse downstream tasks. These tasks encompass not only high-level challenges such as 3D detection and segmentation but also low-level objectives like 3D reconstruction and image synthesis, spanning both indoor and outdoor scenarios. Besides, we also illustrate the capability of pre-training a 2D backbone using the proposed universal methodology, surpassing conventional pre-training methods by a large margin. For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks. The consistent improvements in various settings imply the effectiveness of the proposed method. Code and models will be made available at https://github.com/OpenGVLab/PonderV2.Comment: arXiv admin note: text overlap with arXiv:2301.0015

    Facile, sensitive, and ratiometric detection of mercuric ions using GSH-capped semiconductor quantum dots

    Get PDF
    National Key Basic Research Program of China [2013CB933901]; National Natural Science Foundation of China [21222106, 21021061, 81000662, 81201805]; Fundamental Research Funds for the Central Universities [2010121012]; Scientific Research Foundation for the Returned Overseas Chinese Scholars; Program for New Century Excellent Talents in University [NCET-10-0709]Glutathione (GSH) capped CdTe semiconductor quantum dots (QDs) are applied for detecting mercuric ions (Hg2+) of trace quantity. The synthesis of GSH-capped CdTe (CdTe@GSH) QDs is cost-efficient and straightforward. We observed that Hg2+ can quantitatively quench the fluorescence of CdTe@GSH QDs and further induce the slight redshift of emission peaks due to the quantum confinement effect. Detailed studies by spectroscopy, dynamic light scattering (DLS), and electrospray ionization mass spectrometry (ESI-MS) demonstrated that the competitive Hg2+ binding with GSH makes the surface of CdTe QDs exposed, results in gradual aggregation, and quantitatively changes the photophysical properties of QDs. The whole procedure for detecting Hg2+ by this protocol took less than 10 min. The experimental limit of detection (LOD) of Hg2+ can be as low as 5 nM using CdTe@GSH with a low concentration (0.5 nM) because of the excellent fluorescent properties of QDs. This strategy may become a promising means to simply detect Hg2+ in water with high sensitivity

    The Ginger-shaped Asteroid 4179 Toutatis: New Observations from a Successful Flyby of Chang'e-2

    Full text link
    On 13 December 2012, Chang'e-2 conducted a successful flyby of the near-Earth asteroid 4179 Toutatis at a closest distance of 770 ±\pm 120 meters from the asteroid's surface. The highest-resolution image, with a resolution of better than 3 meters, reveals new discoveries on the asteroid, e.g., a giant basin at the big end, a sharply perpendicular silhouette near the neck region, and direct evidence of boulders and regolith, which suggests that Toutatis may bear a rubble-pile structure. Toutatis' maximum physical length and width are (4.75 ×\times 1.95 km) ±\pm10%\%, respectively, and the direction of the +zz axis is estimated to be (250±\pm5^\circ, 63±\pm5^\circ) with respect to the J2000 ecliptic coordinate system. The bifurcated configuration is indicative of a contact binary origin for Toutatis, which is composed of two lobes (head and body). Chang'e-2 observations have significantly improved our understanding of the characteristics, formation, and evolution of asteroids in general.Comment: 21 pages, 3 figures, 1 tabl
    corecore