3,427 research outputs found

    Discussion of "EQUI-energy sampler" by Kou, Zhou and Wong

    Full text link
    Discussion of ``EQUI-energy sampler'' by Kou, Zhou and Wong [math.ST/0507080]Comment: Published at http://dx.doi.org/10.1214/009053606000000506 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    CERN: Confidence-Energy Recurrent Network for Group Activity Recognition

    Full text link
    This work is about recognizing human activities occurring in videos at distinct semantic levels, including individual actions, interactions, and group activities. The recognition is realized using a two-level hierarchy of Long Short-Term Memory (LSTM) networks, forming a feed-forward deep architecture, which can be trained end-to-end. In comparison with existing architectures of LSTMs, we make two key contributions giving the name to our approach as Confidence-Energy Recurrent Network -- CERN. First, instead of using the common softmax layer for prediction, we specify a novel energy layer (EL) for estimating the energy of our predictions. Second, rather than finding the common minimum-energy class assignment, which may be numerically unstable under uncertainty, we specify that the EL additionally computes the p-values of the solutions, and in this way estimates the most confident energy minimum. The evaluation on the Collective Activity and Volleyball datasets demonstrates: (i) advantages of our two contributions relative to the common softmax and energy-minimization formulations and (ii) a superior performance relative to the state-of-the-art approaches.Comment: Accepted to IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Examining CNN Representations with respect to Dataset Bias

    Full text link
    Given a pre-trained CNN without any testing samples, this paper proposes a simple yet effective method to diagnose feature representations of the CNN. We aim to discover representation flaws caused by potential dataset bias. More specifically, when the CNN is trained to estimate image attributes, we mine latent relationships between representations of different attributes inside the CNN. Then, we compare the mined attribute relationships with ground-truth attribute relationships to discover the CNN's blind spots and failure modes due to dataset bias. In fact, representation flaws caused by dataset bias cannot be examined by conventional evaluation strategies based on testing images, because testing images may also have a similar bias. Experiments have demonstrated the effectiveness of our method.Comment: in AAAI 201
    • …
    corecore