3,427 research outputs found
Discussion of "EQUI-energy sampler" by Kou, Zhou and Wong
Discussion of ``EQUI-energy sampler'' by Kou, Zhou and Wong [math.ST/0507080]Comment: Published at http://dx.doi.org/10.1214/009053606000000506 in the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
CERN: Confidence-Energy Recurrent Network for Group Activity Recognition
This work is about recognizing human activities occurring in videos at
distinct semantic levels, including individual actions, interactions, and group
activities. The recognition is realized using a two-level hierarchy of Long
Short-Term Memory (LSTM) networks, forming a feed-forward deep architecture,
which can be trained end-to-end. In comparison with existing architectures of
LSTMs, we make two key contributions giving the name to our approach as
Confidence-Energy Recurrent Network -- CERN. First, instead of using the common
softmax layer for prediction, we specify a novel energy layer (EL) for
estimating the energy of our predictions. Second, rather than finding the
common minimum-energy class assignment, which may be numerically unstable under
uncertainty, we specify that the EL additionally computes the p-values of the
solutions, and in this way estimates the most confident energy minimum. The
evaluation on the Collective Activity and Volleyball datasets demonstrates: (i)
advantages of our two contributions relative to the common softmax and
energy-minimization formulations and (ii) a superior performance relative to
the state-of-the-art approaches.Comment: Accepted to IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 201
Examining CNN Representations with respect to Dataset Bias
Given a pre-trained CNN without any testing samples, this paper proposes a
simple yet effective method to diagnose feature representations of the CNN. We
aim to discover representation flaws caused by potential dataset bias. More
specifically, when the CNN is trained to estimate image attributes, we mine
latent relationships between representations of different attributes inside the
CNN. Then, we compare the mined attribute relationships with ground-truth
attribute relationships to discover the CNN's blind spots and failure modes due
to dataset bias. In fact, representation flaws caused by dataset bias cannot be
examined by conventional evaluation strategies based on testing images, because
testing images may also have a similar bias. Experiments have demonstrated the
effectiveness of our method.Comment: in AAAI 201
- …