58 research outputs found

    Enhancement of SARS-CoV-2 receptor-binding domain activity by two microbial defensins

    Get PDF
    Peptide binders are of great interest to both basic and biomedical research due to their unique properties in manipulating protein functions in a precise spatial and temporal manner. The receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein is a ligand that captures human angiotensin-converting enzyme 2 (ACE2) to initiate infection. The development of binders of RBDs has value either as antiviral leads or as versatile tools to study the functional properties of RBDs dependent on their binding positions on the RBDs. In this study, we report two microbe-derived antibacterial defensins with RBD-binding activity. These two naturally occurring binders bind wild-type RBD (WT RBD) and RBDs from various variants with moderate-to-high affinity (7.6–1,450 nM) and act as activators that enhance the ACE2-binding activity of RBDs. Using a computational approach, we mapped an allosteric pathway in WT RBD that connects its ACE2-binding sites to other distal regions. The latter is targeted by the defensins, in which a cation-π interaction could trigger the peptide-elicited allostery in RBDs. The discovery of the two positive allosteric peptides of SARS-CoV-2 RBD will promote the development of new molecular tools for investigating the biochemical mechanisms of RBD allostery

    Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antimicrobial peptides (AMPs) are an essential component of innate immunity which can rapidly respond to diverse microbial pathogens. Insects, as a rich source of AMPs, attract great attention of scientists in both understanding of the basic biology of the immune system and searching molecular templates for anti-infective drug design. Despite a large number of AMPs have been identified from different insect species, little information in terms of these peptides is available from parasitic insects.</p> <p>Results</p> <p>By using integrated computational approaches to systemically mining the Hymenopteran parasitic wasp <it>Nasonia vitripennis </it>genome, we establish the first AMP repertoire whose members exhibit extensive sequence and structural diversity and can be distinguished into multiple molecular types, including insect and fungal defensin-like peptides (DLPs) with the cysteine-stabilized α-helical and β-sheet (CSαβ) fold; Pro- or Gly-rich abaecins and hymenoptaecins; horseshoe crab tachystatin-type AMPs with the inhibitor cystine knot (ICK) fold; and a linear α-helical peptide. Inducible expression pattern of seven <it>N. vitripennis </it>AMP genes were verified, and two representative peptides were synthesized and functionally identified to be antibacterial. In comparison with <it>Apis mellifera </it>(Hymenoptera) and several non-Hymenopteran model insects, <it>N. vitripennis </it>has evolved a complex antimicrobial immune system with more genes and larger protein precursors. Three classical strategies that are likely responsible for the complexity increase have been recognized: <it>1</it>) Gene duplication; <it>2</it>) Exon duplication; and <it>3</it>) Exon-shuffling.</p> <p>Conclusion</p> <p>The present study established the <it>N. vitripennis </it>peptidome associated with antimicrobial immunity by using a combined computational and experimental strategy. As the first AMP repertoire of a parasitic wasp, our results offer a basic platform for further studying the immunological and evolutionary significances of these newly discovered AMP-like genes in this class of insects.</p

    Mutational Analysis of the Analgesic Peptide DrTx(1-42) Revealing a Functional Role of the Amino-Terminal Turn

    Get PDF
    Background: DrTx(1-42) (a carboxyl-terminally truncated version of drosotoxin) is a potent and selective blocker of tetrodotoxin-resistant (TTX-R) Na + channels in rat dorsal root ganglion neurons with analgesic activity. This purpose is to identify key amino acids which are responsible for both blocking and analgesic effects of DrTx(1-42). Methods: On the basis of previous study, we designed five mutants of DrTx(1-42) (delN, D8A, D8K, G9A, and G9R) in the amino-terminal turn (N-turn) region, a proposed functional region located in the amino-terminus of the molecule. All these mutants were expressed in E.coli and purified by RP-HPLC. Electrophysiological properties of these analogues were examined by whole-cell patch-clamp recordings and their antinociceptive effects were investigated by the formalin test and acetic acid induced writhing test. Results: All the mutants except for G9A possess a similar secondary structure to that of DrTx(1-42), as identified by circular dichroism analysis. Three mutants (delN, D8A and G9A) were found almost inactive to TTX-R Na + channels, whereas D8K retains similar activity and G9R showed decreased potency when compared with the wild-type molecule. Consistent with the electrophysiological observations, D8K and G9R exhibited antinociceptive effects in the second phase (inflammatory pain) of the formalin test and the acetic acid induced writhing test, while delN, D8A and G9A lack such effects. Conclusions: Our results show that the N-turn is closely related to function of DrTx(1-42). The mutant (D8A) as a contro

    Mesobuthus Venom-Derived Antimicrobial Peptides Possess Intrinsic Multifunctionality and Differential Potential as Drugs

    No full text
    Animal venoms are a mixture of peptides and proteins that serve two basic biological functions: predation and defense against both predators and microbes. Antimicrobial peptides (AMPs) are a common component extensively present in various scorpion venoms (herein abbreviated as svAMPs). However, their roles in predation and defense against predators and potential as drugs are poorly understood. Here, we report five new venom peptides with antimicrobial activity from two Mesobuthus scorpion species. These α-helical linear peptides displayed highly bactericidal activity toward all the Gram-positive bacteria used here but differential activity against Gram-negative bacteria and fungi. In addition to the antibiotic activity, these AMPs displayed lethality to houseflies and hemotoxin-like toxicity on mice by causing hemolysis, tissue damage and inducing inflammatory pain. Unlike AMPs from other origins, these venom-derived AMPs seem to be unsuitable as anti-infective drugs due to their high hemolysis and low serum stability. However, MeuTXKβ1, a known two-domain Mesobuthus AMP, is an exception since it exhibits high activity toward antibiotic resistant Staphylococci clinical isolates with low hemolysis and high serum stability. The findings that the classical AMPs play predatory and defensive roles indicate that the multifunctionality of scorpion venom components is an intrinsic feature likely evolved by natural selection from microbes, prey and predators of scorpions. This definitely provides an excellent system in which one can study how a protein adaptively evolves novel functions in a new environment. Meantimes, new strategies are needed to remove the toxicity of svAMPs on eukaryotic cells when they are used as leads for anti-infective drugs

    Scorpion Toxins: Positive Selection at a Distal Site Modulates Functional Evolution at a Bioactive Site

    No full text
    The bioactive sites of proteins are those that directly interact with their targets. In many immunity-and predation-related proteins, they frequently experience positive selection for dealing with the changes of their targets from competitors. However, some sites that are far away from the interface between proteins and their targets are also identified to evolve under positive selection. Here, we explore the evolutionary implication of such a site in scorpion a-type toxins affecting sodium (Na+) channels (abbreviated as alpha-ScNaTxs) using a combination of experimental and computational approaches. We found that despite no direct involvement in interaction with Na+ channels, mutations at this site by different types of amino acids led to toxicity change on both rats and insects in three a-ScNaTxs, accompanying differential effects on their structures. Molecular dynamics simulations indicated that the mutations changed the conformational dynamics of the positively selected bioactive site-containing functional regions by allosteric communication, suggesting a potential evolutionary correlation between these bioactive sites and the distant nonbioactive site. Our results reveal for the first time the cause of fast evolution at nonbioactive sites of scorpion neurotoxins, which is presumably to adapt to the change of their bioactive sites through coevolution to maintain an active conformation for channel binding. This might aid rational design of scorpion Na+ channel toxins with improved phyletic selectivity via modification of a distant nonbioactive site

    Molecular Dynamics Simulation Reveals Specific Interaction Sites between Scorpion Toxins and Kv1.2 Channel: Implications for Design of Highly Selective Drugs

    No full text
    The Kv1.2 channel plays an important role in the maintenance of resting membrane potential and the regulation of the cellular excitability of neurons, whose silencing or mutations can elicit neuropathic pain or neurological diseases (e.g., epilepsy and ataxia). Scorpion venom contains a variety of peptide toxins targeting the pore region of this channel. Despite a large amount of structural and functional data currently available, their detailed interaction modes are poorly understood. In this work, we choose four Kv1.2-targeted scorpion toxins (Margatoxin, Agitoxin-2, OsK-1, and Mesomartoxin) to construct their complexes with Kv1.2 based on the experimental structure of ChTx-Kv1.2. Molecular dynamics simulation of these complexes lead to the identification of hydrophobic patches, hydrogen-bonds, and salt bridges as three essential forces mediating the interactions between this channel and the toxins, in which four Kv1.2-specific interacting amino acids (D353, Q358, V381, and T383) are identified for the first time. This discovery might help design highly selective Kv1.2-channel inhibitors by altering amino acids of these toxins binding to the four channel residues. Finally, our results provide new evidence in favor of an induced fit model between scorpion toxins and K+ channel interactions

    Exon Shuffling and Origin of Scorpion Venom Biodiversity

    No full text
    Scorpion venom is a complex combinatorial library of peptides and proteins with multiple biological functions. A combination of transcriptomic and proteomic techniques has revealed its enormous molecular diversity, as identified by the presence of a large number of ion channel-targeted neurotoxins with different folds, membrane-active antimicrobial peptides, proteases, and protease inhibitors. Although the biodiversity of scorpion venom has long been known, how it arises remains unsolved. In this work, we analyzed the exon-intron structures of an array of scorpion venom protein-encoding genes and unexpectedly found that nearly all of these genes possess a phase-1 intron (one intron located between the first and second nucleotides of a codon) near the cleavage site of a signal sequence despite their mature peptides remarkably differ. This observation matches a theory of exon shuffling in the origin of new genes and suggests that recruitment of different folds into scorpion venom might be achieved via shuffling between body protein-coding genes and ancestral venom gland-specific genes that presumably contributed tissue-specific regulatory elements and secretory signal sequences

    A Fungal Defensin Inhibiting Bacterial Cell-Wall Biosynthesis with Non-Hemolysis and Serum Stability

    No full text
    Defensins are a class of cationic disulfide-bridged antimicrobial peptides (AMPs) present in many eukaryotic organisms and even in bacteria. They primarily include two distinct but evolutionarily related superfamilies (cis and trans). Defensins in fungi belong to the members of the cis-superfamily with the cysteine-stabilized α-helical and β-sheet fold. To date, many fungal defensin-like peptides (fDLPs) have been found through gene mining of the genome resource, but only a few have been experimentally characterized. Here, we report the structural and functional characterization of Pyronesin4 (abbreviated as Py4), a fDLP previously identified by genomic sequencing of the basal filamentous ascomycete Pyronema confluens. Chemically, synthetic Py4 adopts a native-like structure and exhibits activity on an array of Gram-positive bacteria including some clinical isolates of Staphylococcus and Staphylococcus warneri, a conditioned pathogen inhabiting in human skin. Py4 markedly altered the bacterial morphology and caused cytoplasmic accumulation of the cell-wall synthesis precursor through binding to the membrane-bound Lipid II, indicating that it works as an inhibitor of cell-wall biosynthesis. Py4 showed no hemolysis and high mammalian serum stability. This work identified a new fungal defensin with properties relevant to drug exploration. Intramolecular epistasis between mutational sites of fDLPs is also discussed

    High-Throughput Legume Seed Phenotyping Using a Handheld 3D Laser Scanner

    No full text
    High-throughput phenotyping involves many samples and diverse trait types. For the goal of automatic measurement and batch data processing, a novel method for high-throughput legume seed phenotyping is proposed. A pipeline of automatic data acquisition and processing, including point cloud acquisition, single-seed extraction, pose normalization, three-dimensional (3D) reconstruction, and trait estimation, is proposed. First, a handheld laser scanner is used to obtain the legume seed point clouds in batches. Second, a combined segmentation method using the RANSAC method, the Euclidean segmentation method, and the dimensionality of the features is proposed to conduct single-seed extraction. Third, a coordinate rotation method based on PCA and the table normal is proposed to conduct pose normalization. Fourth, a fast symmetry-based 3D reconstruction method is built to reconstruct a 3D model of the single seed, and the Poisson surface reconstruction method is used for surface reconstruction. Finally, 34 traits, including 11 morphological traits, 11 scale factors, and 12 shape factors, are automatically calculated. A total of 2500 samples of five kinds of legume seeds are measured. Experimental results show that the average accuracies of scanning and segmentation are 99.52% and 100%, respectively. The overall average reconstruction error is 0.014 mm. The average morphological trait measurement accuracy is submillimeter, and the average relative percentage error is within 3%. The proposed method provides a feasible method of batch data acquisition and processing, which will facilitate the automation in high-throughput legume seed phenotyping
    corecore