35 research outputs found
Two-dimensional electron gas related emissions in ZnMgO/ZnO heterostructures
Radiative recombination of two-dimensional electron gas(2DEG), induced by polarization and validated by Hall effect measurements, is investigated in ZnMgO/ZnO heterostructures grown by metal-organic chemical vapor deposition. The Mg composition, the depth profile distribution of Mg, the residual strain in ZnMgO caplayer, and the thickness of caplayer all significantly influence the 2DEG-related transitions in ZnMgO/ZnO heterostructures. Below or above ZnO donor bound exciton, three additional broad emissions persisting up to 100 K are assigned to the spatially indirect transitions from 2DEG electrons to the photoexcited holes towards the ZnO flat-band region or remaining at the heterointerface.Research is supported by the State
Key Program for Basic Research of China under Grant No.
2011CB302003 and National Natural Science Foundation of
China (Nos. 61025020 and 60990312)
Staircase Band Gap Si \u3csub\u3e1-x\u3c/sub\u3eGe\u3csub\u3ex\u3c/sub\u3e/Si Photodectectors
We fabricated Si 1-xGex/Si photodetectors by using a staircase band gap Si 1-xGex/Si structure. These devices exhibit a high optical response with a peak responsive wavelength at 0.96 μm and a responsivity of 27.8 A/W at -5 V bias. Excellent electrical characteristics evidenced by good diode rectification are also demonstrated. The dark current density is 0.1 pA/μm2 at V bias, and the breakdown voltage is -27 V. The high response is explained as the result of a staircase band gap by theoretical analysis
Room-Temperature Blue Luminescence of Thermally Oxidized Si\u3csub\u3e1-x-y\u3c/sub\u3eGe\u3csub\u3ex\u3c/sub\u3eC\u3csub\u3ey\u3c/sub\u3e Thin Films on Si (100) Substrates
We measured at room temperature the photoluminescence spectra of the thermally oxidized Si1-x-yGexCy thin films which were grown on silicon substrates by plasma-enhanced chemical vapor deposition and the wet oxidized at 1100 °C for 20 min. The photoluminescence band with a peak at ~393 nm under the exciting radiation of λ = 241 nm was observed. Possible mechanism of this photoluminescence is discussed
Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films
The authors reported on a carrier-concentration mediation of exciton-related radiative transition energies in Al-doped ZnO films utilizing temperature-dependent (TD) photoluminescence and TD Hall-effect characterizations. The transition energies of free and donor bound excitons consistently change with the measured TD carrier concentrations. Such a carrier-concentration mediation effect can be well described from the view of heavy-doping-induced free-carrier screening and band gap renormalization effects. This study gives an important development to the currently known optical properties of ZnO materials.This research is supported by the State Key Program for
Basic Research of China under Grant No. 2011CB302003,
National Natural Science Foundation of China (Nos.
61025020, 60990312, and 61274058), Basic Research
Program of Jiangsu Province (BK2011437), and the Priority
Academic Program Development of Jiangsu Higher
Education Institutions
Thermal pretreatment of sapphire substrates prior to ZnO buffer layer growth
The properties of ZnO buffer layers grown via metal-organic chemical vapor deposition (MOCVD) on sapphire substrates after various thermal pretreatments are systematically investigated. High-temperature pretreatments lead to significant modifications of the sapphire surface, which result in enhanced growth nucleation and a consequent improvement of the surface morphology and quality of the ZnO layers. The evolution of the surface morphology as seen by atomic force microscopy indicates an obvious growth mode transition from three-dimensional to quasi-two-dimensional as the pretreatment temperature increases. A minimum surface roughness is obtained when the pretreatment temperature reaches 1150 °C, implying that a high-temperature pretreatment at 1150 °C or above may lead to a conversion of the surface polarity from O-face to Zn-face, similar to processes in GaN material growth via MOCVD. By analyzing the evolution of the film properties as a function of pretreatment temperature, the optimal condition has been determined to be at 1150 °C. This study indicates that a high-temperature pretreatment is crucial to grow high-quality ZnO on sapphire substrates by MOCVD.This research was supported by the State Key Program
for Basic Research of China under Grant No.
2011CB302003, National Natural Science Foundation of
China (Nos. 61025020, 60990312, and 61274058), Basic
Research Program of Jiangsu Province (BK2011437), and
the Priority Academic Program Development of Jiangsu
Higher Education Institutions
Clinical value of perivascular fat attenuation index and computed tomography derived fractional flow reserve in identification of culprit lesion of subsequent acute coronary syndrome
PurposeTo explore the potential of perivascular fat attenuation index (FAI) and coronary computed tomography angiography (CCTA) derived fractional flow reserve (CT-FFR) in the identification of culprit lesion leading to subsequent acute coronary syndrome (ACS).MethodsThirty patients with documented ACS event who underwent invasive coronary angiography (ICA) from February 2019 to February 2021 and had received CCTA in the previous 6 months were collected retrospectively. 40 patients with stable angina pectoris (SAP) were matched as control group according to sex, age and risk factors. The study population has a mean age of 59.3 ± 12.3 years, with a male prevalence of 81.4%. The plaque characteristics, perivascular fat attenuation index (FAI), and coronary computed tomography angiography-derived fractional flow reserve (CT-FFR) of 32 culprit lesions and 30 non-culprit lesions in ACS patients and 40 highest-grade stenosis lesions in SAP patients were statistically analyzed.ResultsFAI around culprit lesions was increased significantly (−72.4 ± 3.2 HU vs. −79.0 ± 7.7 HU, vs. −80.4 ± 7.0HU, all p < 0.001) and CT-FFR was decreased for culprit lesions of ACS patients [0.7(0.1) vs. 0.8(0.1), vs.0.8(0.1), p < 0.001] compared to other lesions. According to multivariate analysis, diameter stenosis (DS), FAI, and CT-FFR were significant predictors for identification of the culprit lesion. The integration model of DS, FAI, and CT-FFR showed the significantly highest area under the curve (AUC) of 0.917, compared with other single predictors (all p < 0.05).ConclusionsThis study proposes a novel integrated prediction model of DS, FAI, and CT-FFR that enhances the diagnostic accuracy of traditional CCTA for identifying culprit lesions that trigger ACS. Furthermore, this model also provides improved risk stratification for patients and offers valuable insights for predicting future cardiovascular events
Evaluation of the Observational Associations and Shared Genetics Between Glaucoma With Depression and Anxiety
PURPOSE: Glaucoma, a leading cause of blindness worldwide, is suspected to exhibit a notable association with psychological disturbances. This study aimed to investigate epidemiological associations and explore shared genetic architecture between glaucoma and mental traits, including depression and anxiety.METHODS: Multivariable logistic regression and Cox proportional hazards regression models were employed to investigate longitudinal associations based on UK Biobank. A stepwise approach was used to explore the shared genetic architecture. First, linkage disequilibrium score regression inferred global genetic correlations. Second, MiXeR analysis quantified the number of shared causal variants. Third, specific shared loci were detected through conditional/conjunctional false discovery rate (condFDR/conjFDR) analysis and characterized for biological insights. Finally, two-sample Mendelian randomization (MR) was conducted to investigate bidirectional causal associations.RESULTS: Glaucoma was significantly associated with elevated risks of hospitalized depression (hazard ratio [HR] = 1.54; 95% confidence interval [CI], 1.01-2.34) and anxiety (HR = 2.61; 95% CI, 1.70-4.01) compared to healthy controls. Despite the absence of global genetic correlations, MiXeR analysis revealed 300 variants shared between glaucoma and depression, and 500 variants shared between glaucoma and anxiety. Subsequent condFDR/conjFDR analysis discovered 906 single-nucleotide polymorphisms (SNPs) jointly associated with glaucoma and depression and two associated with glaucoma and anxiety. The MR analysis did not support robust causal associations but indicated the existence of pleiotropic genetic variants influencing both glaucoma and depression.CONCLUSIONS: Our study enhances the existing epidemiological evidence and underscores the polygenic overlap between glaucoma and mental traits. This observation suggests a correlation shaped by pleiotropic genetic variants rather than being indicative of direct causal relationships.</p
Evaluation of the Observational Associations and Shared Genetics Between Glaucoma With Depression and Anxiety
PURPOSE: Glaucoma, a leading cause of blindness worldwide, is suspected to exhibit a notable association with psychological disturbances. This study aimed to investigate epidemiological associations and explore shared genetic architecture between glaucoma and mental traits, including depression and anxiety.METHODS: Multivariable logistic regression and Cox proportional hazards regression models were employed to investigate longitudinal associations based on UK Biobank. A stepwise approach was used to explore the shared genetic architecture. First, linkage disequilibrium score regression inferred global genetic correlations. Second, MiXeR analysis quantified the number of shared causal variants. Third, specific shared loci were detected through conditional/conjunctional false discovery rate (condFDR/conjFDR) analysis and characterized for biological insights. Finally, two-sample Mendelian randomization (MR) was conducted to investigate bidirectional causal associations.RESULTS: Glaucoma was significantly associated with elevated risks of hospitalized depression (hazard ratio [HR] = 1.54; 95% confidence interval [CI], 1.01-2.34) and anxiety (HR = 2.61; 95% CI, 1.70-4.01) compared to healthy controls. Despite the absence of global genetic correlations, MiXeR analysis revealed 300 variants shared between glaucoma and depression, and 500 variants shared between glaucoma and anxiety. Subsequent condFDR/conjFDR analysis discovered 906 single-nucleotide polymorphisms (SNPs) jointly associated with glaucoma and depression and two associated with glaucoma and anxiety. The MR analysis did not support robust causal associations but indicated the existence of pleiotropic genetic variants influencing both glaucoma and depression.CONCLUSIONS: Our study enhances the existing epidemiological evidence and underscores the polygenic overlap between glaucoma and mental traits. This observation suggests a correlation shaped by pleiotropic genetic variants rather than being indicative of direct causal relationships.</p
A Time–Frequency Correlation Analysis Method of Time Series Decomposition Derived from Synchrosqueezed S Transform
Traditional correlation analysis is analyzed separately in the time domain or the frequency domain, which cannot reflect the time-varying and frequency-varying characteristics of non-stationary signals. Therefore, a time⁻frequency (TF) correlation analysis method of time series decomposition (TD) derived from synchrosqueezed S transform (SSST) is proposed in this paper. First, the two-dimensional time⁻frequency matrices of the signals is obtained by synchrosqueezed S transform. Second, time series decomposition is used to transform the matrices into the two-dimensional time⁻time matrices. Third, a correlation analysis of the local time characteristics is carried out, thus attaining the time⁻frequency correlation between the signals. Finally, the proposed method is validated by stationary and non-stationary signals simulation and is compared with the traditional correlation analysis method. The simulation results show that the traditional method can obtain the overall correlation between the signals but cannot reflect the local time and frequency correlations. In particular, the correlations of non-stationary signals cannot be accurately identified. The proposed method not only obtains the overall correlations between the signals, but can also accurately identifies the correlations between non-stationary signals, thus showing the time-varying and frequency-varying correlation characteristics. The proposed method is applied to the acoustic signal processing of an engine⁻gearbox test bench. The results show that the proposed method can effectively identify the time⁻frequency correlation between the signals