23 research outputs found

    Schistosoma japonicum MiRNA-7-5p Inhibits the Growth and Migration of Hepatoma Cells via Cross-Species Regulation of S-Phase Kinase-Associated Protein 2

    Get PDF
    MicroRNAs (miRNAs) play important roles in human diseases, such as cancer. Human miRNA-7-5p is a tumor suppressor miRNA that inhibits tumor growth by regulating multiple oncogenic signal pathways. Recently, studies revealed that plant miRNAs could regulate mammalian gene expression in a cross-kingdom manner. Schistosoma japonicum miRNA-7-5p (designated as sja-miR-7-5p) is conserved between the parasites and mammals. Thus, we investigated whether sja-miR-7-5p has similar antitumor activity to its mammalian counterpart. We first showed that sja-miR-7-5p was detected in host hepatocytes during S. japonicum infection. The sja-miR-7-5p mimics significantly inhibited the growth, migration, and colony formation of mouse and human hepatoma cell lines in vitro, and induced G1/G0 cell cycle arrest. In a xenograft animal model, the tumor volume and weight were significantly reduced in mice inoculated with hepatoma cells transfected with sja-miR-7-5p mimics compared with those transfected with NC miRNAs. Furthermore, the antitumor activity of sja-miR-7-5p was suggested by cross-species downregulation of the S-phase kinase-associated protein 2 gene in the host. Thus, sja-miR-7-5p is translocated into hepatocytes and exerts its anti-cancer activities in mammals, implying that sja-miR-7-5p might strengthen host resistance to hepatocellular carcinoma during schistosome infection

    Nitric Oxide Synthase Is Involved in Follicular Development via the PI3K/AKT/FoxO3a Pathway in Neonatal and Immature Rats

    No full text
    It is assumed that nitric oxide synthase and nitric oxide are involved in the regulation of female reproduction. This study aimed to assess the roles of nitric oxide synthase (NOS) in follicular development. The endothelial NOS (eNOS) inhibitor L-NAME, inducible NOS (iNOS) inhibitor S-Methylisothiourea (SMT) and NOS substrate L-arginine (L-Arg) were used in the NOS inhibition models in vivo. Neonatal female rats were treated with phosphate buffer saline (PBS, control), L-NAME (L-NG-Nitroarginine Methyl Ester, 40 mg/kg), SMT (S-Methylisothiourea, 10 mg/kg), L-NAME + SMT, or L-Arg (L-arginine, 50 mg/kg) via subcutaneous (SC) injection on a daily basis for 19 consecutive days, with the samples being collected on specific postnatal days (PD5, PD10, and PD19). The results indicated that the number of antral follicles, the activity of total-NOS, iNOS, neuronal NOS (nNOS), and eNOS, and the content of NO in the ovary were significantly (p < 0.05) increased in the L-Arg group at PD19, while those in L + S group were significantly (p < 0.05) decreased. Meanwhile, the ovarian expression in the L-Arg group in terms of p-AKT, p-FoxO3a, and LC3-II on PD19 were significantly (p < 0.05) upregulated, while the expressions of PTEN and cleaved Caspase-3 were (p < 0.05) downregulated as a result of NOS/NO generation, respectively. Therefore, the results suggest that NOS is possibly involved in the maturation of follicular development to puberty via the PI3K/AKT/FoxO3a pathway, through follicular autophagia and apoptosis mechanisms

    Design and application of the multifunctional trolley for debridement and wound care (一种多功能清创车的设计与应用)

    No full text
    This paper introduced the design and application of the multifunctional trolley for debridement and wound care. The trolley comprised of multiple functional components is effective to reduce manual operating workload and reduce occupational exposure. (清创车是临床常见的医疗器械装备。本文介绍一款多功能清创车的设计原理和使用方法, 通过多个部件的联合运作, 能够有效减少人工操作, 降低职业暴露风险。

    Dapagliflozin restores insulin and growth hormone secretion in obese mice

    No full text
    The well-documented hormonal disturbance in a general obese population is characterised by an increase in insulin secretion and a decrease in growth hormone (GH) secretion. Such hormonal disturbance promotes an increase in fat mass, which deteriorates obesity and accelerates the development of insulin resistance and type 2 diabetes. While the pathological consequence is alarming, the pharmaceutical approach attempting to correct such hormonal disturbance remains limited. By applying an emerging anti-diabetic drug, the sodium-glucose cotransporter 2 inhibitor, dapagliflozin (1mg/kg/day for 10 weeks), to a hyperphagic obese mouse model, we observed a significant improvement in insulin and GH secretion as early as 4 weeks after the initiation of the treatment. Restoration of pathological disturbance of insulin and GH secretion reduced fat accumulation and preserved lean body mass in the obese animal model. Such phenotypic improvement followed with concurrent improvements in glucose and lipid metabolism, insulin sensitivity, as well as the expression of metabolic genes that were regulated by insulin and GH. In conclusion, 10 weeks of treatment with dapagliflozin effectively reduces hyperinsulinemia and restores pulsatile GH secretion in the hyperphagic obese mice with considerable improvement in lipid and glucose metabolism. Promising outcomes from this study may provide insights into drug intervention to correct hormonal disturbance in obesity to delay the diabetes progression
    corecore