39 research outputs found

    Study of charm hadronization and in-medium modification at the Electron-ion Collider in China

    Full text link
    Charm quark production and its hadronization in ep and eA collisions at the future Electron-Ion Collider in China (EicC) will help us understand the quark/gluon fragmentation processes and the hadronization mechanisms in the nuclear medium, especially within a poorly constrained kinematic region (x<0.1x<0.1). In this paper, we report a study on the production of charmed hadrons, D0D^0 and Λc+\Lambda_c^+, reconstructed with a dedicated GEANT4 simulation of vertex&\,\&\,tracking detectors designed for EicC. The Λc+\Lambda_c^+/D0D^0 ratios as functions of multiplicity and pTp_T, as well as the D0D^0 double ratio are presented with projected statistical precision.Comment: 9 pages, 12 figure

    Secrets of RLHF in Large Language Models Part I: PPO

    Full text link
    Large language models (LLMs) have formulated a blueprint for the advancement of artificial general intelligence. Its primary objective is to function as a human-centric (helpful, honest, and harmless) assistant. Alignment with humans assumes paramount significance, and reinforcement learning with human feedback (RLHF) emerges as the pivotal technological paradigm underpinning this pursuit. Current technical routes usually include \textbf{reward models} to measure human preferences, \textbf{Proximal Policy Optimization} (PPO) to optimize policy model outputs, and \textbf{process supervision} to improve step-by-step reasoning capabilities. However, due to the challenges of reward design, environment interaction, and agent training, coupled with huge trial and error cost of large language models, there is a significant barrier for AI researchers to motivate the development of technical alignment and safe landing of LLMs. The stable training of RLHF has still been a puzzle. In the first report, we dissect the framework of RLHF, re-evaluate the inner workings of PPO, and explore how the parts comprising PPO algorithms impact policy agent training. We identify policy constraints being the key factor for the effective implementation of the PPO algorithm. Therefore, we explore the PPO-max, an advanced version of PPO algorithm, to efficiently improve the training stability of the policy model. Based on our main results, we perform a comprehensive analysis of RLHF abilities compared with SFT models and ChatGPT. The absence of open-source implementations has posed significant challenges to the investigation of LLMs alignment. Therefore, we are eager to release technical reports, reward models and PPO code

    Investigating Λ\Lambda baryon production in p-Pb collisions in jets and underlying event using angular correlations

    No full text
    This paper presents the first measurements of hadron(h)Λ-\Lambda azimuthal angular correlations in p-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV using the ALICE detector at the LHC. These correlations are used to separate the production of associated Λ\Lambda baryons into three different kinematic regions, namely those produced in the direction of the trigger particle (near-side), those produced in the opposite direction (away-side), and those whose production is uncorrelated with the jet-axis (underlying event). The per-trigger associated Λ\Lambda yields in these regions are extracted, along with the near- and away-side azimuthal peak widths, and the results are studied as a function of associated particle pTp_{\rm T} and event multiplicity. Comparisons with the DPMJET event generator and previous measurements of the ϕ(1020)\phi(1020) meson are also made. The final results indicate that strangeness production in the highest multiplicity p-Pb collisions is enhanced relative to low multiplicity collisions in the jet-like regions, as well as the underlying event. The production of Λ\Lambda relative to charged hadrons is also enhanced in the underlying event when compared to the jet-like regions. Additionally, the results hint that strange quark production in the away-side of the jet is modified by soft interactions with the underlying event.First measurements of hadron(h)Λ-\Lambda azimuthal angular correlations in p-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV using the ALICE detector at the LHC are presented. These correlations are used to separate the production of associated Λ\Lambda baryons into three different kinematic regions, namely those produced in the direction of the trigger particle (near-side), those produced in the opposite direction (away-side), and those whose production is uncorrelated with the jet-axis (underlying event). The per-trigger associated Λ\Lambda yields in these regions are extracted, along with the near- and away-side azimuthal peak widths, and the results are studied as a function of associated particle pTp_{\rm T} and event multiplicity. Comparisons with the DPMJET event generator and previous measurements of the ϕ(1020)\phi(1020) meson are also made. The final results indicate that strangeness production in the highest multiplicity p-Pb collisions is enhanced relative to low multiplicity collisions in the jet-like regions, as well as the underlying event. The production of Λ\Lambda relative to charged hadrons is also enhanced in the underlying event when compared to the jet-like regions. Additionally, the results hint that strange quark production in the away-side of the jet is modified by soft interactions with the underlying event

    Exclusive four pion photoproduction in ultraperipheral Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    International audienceThe intense photon fluxes from relativistic nuclei provide an opportunity to study photonuclear interactions in ultraperipheral collisions. The measurement of coherently photoproduced π+ππ+π\pi^+\pi^-\pi^+\pi^- final states in ultraperipheral Pb-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV is presented for the first time. The cross section, dσ\sigma/dyy, times the branching ratio (ρπ+π+ππ\rho\rightarrow \pi^+ \pi^+ \pi^- \pi^-) is found to be 47.8±2.3 (stat.)±7.7 (syst.)47.8\pm2.3~\rm{(stat.)}\pm7.7~\rm{(syst.)} mb in the rapidity interval y<0.5|y| < 0.5. The invariant mass distribution is not well described with a single Breit-Wigner resonance. The production of two interfering resonances, ρ(1450)\rho(1450) and ρ(1700)\rho(1700), provides a good description of the data. The values of the masses (mm) and widths (Γ\Gamma) of the resonances extracted from the fit are m1=1385±14 (stat.)±3 (syst.)m_{1}=1385\pm14~\rm{(stat.)}\pm3~\rm{(syst.)} MeV/c2c^2, Γ1=431±36 (stat.)±82 (syst.)\Gamma_{1}=431\pm36~\rm{(stat.)}\pm82~\rm{(syst.)} MeV/c2c^2, m2=1663±13 (stat.)±22 (syst.)m_{2}=1663\pm13~\rm{(stat.)}\pm22~\rm{(syst.)} MeV/c2c^2 and Γ2=357±31 (stat.)±49 (syst.)\Gamma_{2}=357 \pm31~\rm{(stat.)}\pm49~\rm{(syst.)} MeV/c2c^2, respectively. The measured cross sections times the branching ratios are compared to recent theoretical predictions

    K∗(892)± resonance production in Pb−Pb collisions at √sNN = 5.02 TeV

    No full text
    The production of K∗(892)± meson resonance is measured at midrapidity (|y|8 GeV/c, consistent with measurements for other light-flavored hadrons. The smallest values are observed in most central collisions, indicating larger energy loss of partons traversing the dense medium
    corecore