54 research outputs found

    Natural Coevolution of Tumor and Immunoenvironment in Glioblastoma.

    Get PDF
    Isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) has a dismal prognosis. A better understanding of tumor evolution holds the key to developing more effective treatment. Here we study GBM\u27s natural evolutionary trajectory by using rare multifocal samples. We sequenced 61,062 single cells from eight multifocal IDH wild-type primary GBMs and defined a natural evolution signature (NES) of the tumor. We show that the NES significantly associates with the activation of transcription factors that regulate brain development, including MYBL2 and FOSL2. Hypoxia is involved in inducing NES transition potentially via activation of the HIF1A-FOSL2 axis. High-NES tumor cells could recruit and polarize bone marrow-derived macrophages through activation of the FOSL2-ANXA1-FPR1/3 axis. These polarized macrophages can efficiently suppress T-cell activity and accelerate NES transition in tumor cells. Moreover, the polarized macrophages could upregulate CCL2 to induce tumor cell migration. SIGNIFICANCE: GBM progression could be induced by hypoxia via the HIF1A-FOSL2 axis. Tumor-derived ANXA1 is associated with recruitment and polarization of bone marrow-derived macrophages to suppress the immunoenvironment. The polarized macrophages promote tumor cell NES transition and migration. This article is highlighted in the In This Issue feature, p. 2711

    Femtosecond laser irradiation-induced infrared absorption on silicon surfaces

    No full text
    The near-infrared (NIR) absorption below band gap energy of crystalline silicon is significantly increased after the silicon is irradiated with femtosecond laser pulses at a simple experimental condition. The absorption increase in the NIR range primarily depends on the femtosecond laser pulse energy, pulse number, and pulse duration. The Raman spectroscopy analysis shows that after the laser irradiation, the silicon surface consists of silicon nanostructure and amorphous silicon. The femtosecond laser irradiation leads to the formation of a composite of nanocrystalline, amorphous, and the crystal silicon substrate surface with microstructures. The composite has an optical absorption enhancement at visible wavelengths as well as at NIR wavelength. The composite may be useful for an NIR detector, for example, for gas sensing because of its large surface area

    Existence and uniqueness results for a coupled fractional order systems with the multi-strip and multi-point mixed boundary conditions

    No full text
    Abstract This paper is concerned with the existence and uniqueness of solutions for a coupled system of fractional differential equations supplemented with the multi-strip and multi-point mixed boundary conditions. The existence of solutions is derived by applying Leray-Schauder’s alternative, while the uniqueness of the solution is established via Banach’s contraction principle. We also show the existence and uniqueness results of a positive solution by applying the Krasnoselskii fixed point theorem

    Changes of Hydrological Components in Arctic Rivers Based on Multi-Source Data during 2003–2016

    No full text
    The hydrological cycle of the Arctic river basin holds an important position in the Earth’s system, which has been significantly disturbed by global warming. This study analyzed recent changes in the hydrological components of two representative Arctic river basins in Siberia and North America, the Lena River Basin (LRB) and Mackenzie River Basin (MRB), respectively. The trends were diagnosed in hydrological components through a comparative analysis and estimations based on remote sensing and observational datasets during 2003–2016. The results showed that the annual precipitation decreased at rates of 1.9 mm/10a and 18.8 mm/10a in the MRB and LRB, respectively. In contrast, evapotranspiration (ET) showed increasing trends, with rates of 9.5 mm/10a and 6.3 mm/10a in the MRB and LRB, respectively. Terrestrial water storage (TWS) was obviously decreased, with rates of 30.3 mm/a and 18.9 mm/a in the MRB and LRB, respectively, which indicated that more freshwater was released. Contradictive trends of the runoffs were found in the two basins, which were increased in the LRB and decreased in the MRB, due to the contributions of the surface water and base flow. In addition, the mean annual cycles of precipitation, ET, TWS, runoff depth, surface flow and base flow behaved differently in both magnitudes and distributions in the LRB and MRB, the trends of which will likely continue with the pronounced warming climate. The current case studies can help to understand the recent changes in the Arctic hydro-climatology and the consequence of global warming in Arctic river basins

    Femtosecond Laser-Induced Thermal Transport in Silicon with Liquid Cooling Bath

    No full text
    Nanostructured regular patterns on silicon surface are made by using femtosecond laser irradiations. This is a novel method that can modify the surface morphology of any large material in an easy, fast, and low-cost way. We irradiate a solid surface with a 400-nm double frequency beam from an 800-nm femtosecond laser, while the solid surface is submerged in a liquid or exposed in air. From the study of multiple-pulses and single-pulse irradiations on silicon, we find the morphologies of nanospikes and capillary waves to follow the same distribution and periodicity. Thermal transport near the solid surface plays an important role in the formation of patterns; a simulation was done to fully understand the mechanism of the pattern formation in single pulse irradiation. The theoretical models include a femtosecond laser pulse function, a two-temperature model (2-T model), and an estimation of interface thermal coupling. The evolution of lattice temperature over time will be calculated first without liquid cooling and then with liquid cooling, which has not been well considered in previous theoretical papers. The lifetime of the capillary wave is found to be longer than the solidification time of the molten silicon only when water cooling is introduced. This allows the capillary wave to be frozen and leaves interesting concentric rings on the silicon surface. The regular nanospikes generated on the silicon surface result from the overlapping capillary waves

    Palladium Supported on Carbon Nanotubes as a High-Performance Catalyst for the Dehydrogenation of Dodecahydro-N-ethylcarbazole

    No full text
    Hydrogen storage in the form of liquid organic hydrides, especially N-ethylcarbazole, has been regarded as a promising technology for substituting traditional fossil fuels owing to its unique merits such as high volumetric, gravimetric hydrogen capacity and safe transportation. However, unsatisfactory dehydrogenation has impeded the widespread application of N-ethylcarbazole as ideal hydrogen storage materials in hydrogen energy. Therefore, designing catalysts with outstanding performance is of importance to address this problem. In the present work, for the first time, we have synthesized Pd nanoparticles immobilized on carbon nanotubes (Pd/CNTs) with different palladium loading through an alcohol reduction technique. A series of characterization technologies, such as X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray photoelectron spectroscopy (XPS) and transmission electron spectroscopy (TEM) were adopted to systematically explore the structure, composition, surface properties and morphology of the catalysts. The results reveal that the Pd NPs with a mean diameter of 2.6 ± 0.6 nm could be dispersed uniformly on the surface of CNTs. Furthermore, Pd/CNTs with different Pd contents were applied in the hydrogen release of dodecahydro-N-ethylcarbazole. Among all of the catalysts tested, 3.0 wt% Pd/CNTs exhibited excellent catalytic performance with the conversion of 99.6% producing 5.8 wt% hydrogen at 533 K, low activation energy of 43.8 ± 0.2 kJ/mol and a high recycling stability (>96.4% conversion at 5th reuse)
    • …
    corecore